Deflection constructions

by Branko Grünbaum
University of Washington, Box 354350, Seattle, WA 98195
e-mail: grunbaum@math.washington.edu
A simple construction described in [2] and [3] leads to unexpectedly varied outcomes. The basic step of the construction is indicated in Figure 1(a). Given two points M and V , mirror V in M to obtain V^{\prime}. This can be formalized by $\mathrm{V}^{\prime}=2 \mathrm{M}-\mathrm{V}$. The construction in [2] consists in selecting as points M successively the vertices $M_{1}, M_{2}, \ldots M_{n}, M_{n+1}=M_{1}$ of an n-gon P. Starting from an arbitrary point $\mathrm{V}=\mathrm{V}_{0}$, a sequence of points V_{j} is obtained by applying the basic step with vertex M_{j} to point $\mathrm{V}_{\mathrm{j}-1}$ already constructed. As shown in more detail in [2], there are the following possibilities, assuming that P is not reduced to a point:
(i) If n is even, then either the points V_{j} are the vertices of an n-gon for every choice of V_{0}, or else these points are equidistant on a ray (half apeirogon). The former happens if and only if P is such that the centroid of the even-labeled M_{j} 's coincides with the centroid of the odd-labeled ones.
(ii) If n is odd, the sequence of V_{j} 's repeats after 2 n steps regardless of V_{0} and P; however, for a certain choice of V_{0}, unique for every P, the sequence of V_{j} repeats already after n steps.

In the present note we shall investigate a generalization of this construction. The basic step is illustrated in Figure 1(b). As before,

(a)

(b)

Figure 1. The basic steps in the constructions described.
we are given two points M and V , but now also a positive real number δ; we mirror V in M to obtain V^{\prime}, and then rotate V^{\prime} about M through the angle δ resulting in V^{*}. The angle δ (measured in radians or degrees) is called the deflection of the construction; as is customary, deflection is defined as the angle between the extension of an edge and the next edge. This can be formalized as

$$
\begin{equation*}
\mathrm{V}^{*}=\mathrm{M}+(\mathrm{V}-\mathrm{M}) \mathrm{e}^{(\delta+\pi) \mathrm{i}}=\mathrm{M}+(\mathrm{V}-\mathrm{M}) \Delta \tag{*}
\end{equation*}
$$

where the points are taken in the complex plane and $\Delta=\mathrm{e}^{(\delta+\pi) \mathrm{i}}$.
Clearly, the topic of [2] corresponds to the deflection $\delta=0$; from now on we shall assume $\delta \neq 0$.

Given a polygon $P=\left[M_{1}, M_{2}, \ldots, M_{n}\right]$ and a deflection δ, in analogy to the procedure in [2], we start with a point $\mathrm{V}=\mathrm{V}_{0}$ and construct a sequence of points by applying the basic step to $\mathrm{V}_{\mathrm{j}-1}$ and M_{j} to obtain $V_{j}, j=1,2, \ldots$, and with subscripts of the vertices M_{j} reduced mod n . When appropriate, we may extend the construction backwards, to obtain a 2-way sequence of V_{j} 's.

As illustrated in Figures 2 and 3, the sequence of V_{j} 's appears to jump all over the plane. However, we shall see that there is an interesting order in the sequence.

Simple computations yield:
$\mathrm{V}_{1}-\mathrm{M}_{1}=\left(\mathrm{V}_{0}-\mathrm{M}_{1}\right) \Delta$,

Figure 2. Illustration of case $n=2$, deflection $\delta=72^{\circ}=2 \pi / 5$; only some of the V_{j} 's are labeled.

Figure 3. Illustration of case $\mathrm{n}=4$, deflection $\delta=22.5^{\circ}=\pi / 8$.
$\mathrm{V}_{2}-\mathrm{M}_{2}=\left(\mathrm{V}_{1}-\mathrm{M}_{2}\right) \Delta=\left(\mathrm{V}_{0}-\mathrm{M}_{1}\right) \Delta^{2}+\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right) \Delta$ giving by induction, for all $k \geq 1$,
$\mathrm{V}_{\mathrm{k}}-\mathrm{M}_{\mathrm{k}}=\left(\mathrm{V}_{0}-\mathrm{M}_{1}\right) \Delta^{\mathrm{k}}+\sum_{1 \leq \mathrm{j} \leq \mathrm{k}-1}\left(\mathrm{M}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}+1}\right) \Delta^{\mathrm{k}-\mathrm{j}}$.
It follows that

$$
\begin{align*}
\mathrm{V}_{\mathrm{n}}-\mathrm{V}_{0}= & \left(\mathrm{V}_{0}-\mathrm{M}_{1}\right) \Delta^{\mathrm{n}}+\sum_{1 \leq \mathrm{j} \leq \mathrm{n}-1}\left(\mathrm{M}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}+1}\right) \Delta^{\mathrm{n}-\mathrm{j}-1}(\Delta-1)+ \\
& +\mathrm{M}_{1} \Delta-\mathrm{V}_{0}, \tag{**}
\end{align*}
$$

hence

$$
\begin{aligned}
\mathrm{V}_{2 \mathrm{n}}-\mathrm{V}_{\mathrm{n}}= & \left(\mathrm{V}_{\mathrm{n}}-\mathrm{M}_{1}\right) \Delta^{\mathrm{n}}+\sum_{\mathrm{n}+1 \leq \mathrm{j} \leq 2 \mathrm{n}-1}\left(\mathrm{M}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}+1}\right) \Delta^{2 \mathrm{nj-j}-1}(\Delta-1)+ \\
& +\mathrm{M}_{1} \Delta-\mathrm{V}_{\mathrm{n}} .
\end{aligned}
$$

But $\mathrm{M}_{\mathrm{n}+\mathrm{j}}=\mathrm{M}_{\mathrm{j}}$, thus

$$
\begin{aligned}
\mathrm{V}_{2 \mathrm{n}}-\mathrm{V}_{\mathrm{n}}= & \left(\mathrm{V}_{\mathrm{n}}-\mathrm{M}_{1}\right) \Delta^{\mathrm{n}}+\sum_{1 \leq \mathrm{j} \leq \mathrm{n}-1}\left(\mathrm{M}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}+1}\right) \Delta^{\mathrm{nj-j}-1}(\Delta-1)+ \\
& +\mathrm{M}_{1} \Delta-\mathrm{V}_{\mathrm{n}} .
\end{aligned}
$$

Therefore
$\mathrm{V}_{2 \mathrm{n}}-\mathrm{V}_{\mathrm{n}}=\left(\mathrm{V}_{\mathrm{n}}-\mathrm{V}_{0}\right) \Delta^{\mathrm{n}}$.
The equation $\left({ }^{* *}\right)$ has a very simple meaning. We denote $\mathrm{W}_{\mathrm{j}}=$ V_{nj} and interpret the sequence W_{j} as the vertices of a polygonal line $\mathrm{Q}=\left[\mathrm{W}_{0}, \mathrm{~W}_{1}, \ldots, \mathrm{~W}_{\mathrm{j}}, \ldots\right]$. Then (${ }^{* *}$) and $\left(^{*}\right)$ imply that all
edges of Q have the same length, and that at each vertex the deflection is the same - namely, $\mathrm{n} \delta$ or $\mathrm{n} \delta+\pi$ depending on whether n is even or odd. Therefore, the polygonal line Q either repeats after a finite number of steps, or else it never repeats. The former happens if δ is a rational multiple of π, otherwise we have the second possibility. Hence:
(iii) If δ is an irrational multiple of π, then the sequence Q is a cyclic apeirogon. By this we mean a concyclic infinite sequence of points, adjacent points of the sequence being at a constant distance. This denumerable sequence is dense in the circle - hence not representable in a graphically meaningful way, - but it is of special character due to the equidistance of the adjacent pairs. Also, see the exception discussed in (e) below.
(iv) If $\delta=\pi \mathrm{q} / \mathrm{r}$, where q / r is a fraction in reduced form, Q is an equilateral polygon with deflection at each vertex constant and equal to $\pi n q / r$ or $\pi(1+n q / r)$, depending on whether n is even or odd. Thus Q is a regular polygon, of a certain type $\{\mathrm{k} / \mathrm{d}\}$. Again, there is an exception discussed below in (e).

This is illustrated in Figures 4, 5, 6 and 7. More precisely, by equation $(* *)$, for even n the deflection at each vertex of $\{k / d\}$ is $2 \pi \mathrm{~d} / \mathrm{k}$, hence we have $2 \mathrm{~d} / \mathrm{k}=\mathrm{nq} / \mathrm{r}$, or $\mathrm{k} / \mathrm{d}=2 \mathrm{r} / \mathrm{nq}$, so Q is the polygon $\{2 \mathrm{r} / \mathrm{nq}\}$. For odd n we have $2 \mathrm{~d} / \mathrm{k}=1+\mathrm{nq} / \mathrm{r}$, hence $\mathrm{k} / \mathrm{d}=$ $2 \mathrm{r} /(\mathrm{nq}+\mathrm{r})$ and Q is the polygon $\{2 \mathrm{r} /(\mathrm{nq}+\mathrm{r})\}$.

Naturally, we may interpret the vertices of Q as either an infinite sequence of vertices that is periodic with period $2 r$ so that each vertex of Q represents infinitely many points of the sequence of W_{j} 's, or else consider just one period of this sequence. However, even in the latter case, there may be repeated vertices. For example, if $\mathrm{n}=3$ and $\delta=24^{\circ}=2 \pi / 15$, the $\mathrm{k} / \mathrm{d}=30 / 21$, and the 30 vertices of Q are represented by the 10 vertices of $\{10 / 7\}$, each accounting for three of the 30 vertices of Q . For more details about polygons $\{\mathrm{k} / \mathrm{d}\}$ with k and d not coprime see, for example, [1].

Several comments seem appropriate and are illustrated by the figures.
(a) Each of the points V_{i} can be interpreted as leading to a polygon Q_{i} congruent to $\mathrm{Q}=\mathrm{Q}_{0}$. Thus the complete picture contains n polygons Q_{i}.
(b) In case $\{\mathrm{k} / \mathrm{d}\}=\{2\}$ the polygons Q_{i} have to be interpreted as digons, each represented by a segment.

Figure 4. The rather chaotic appearing sequence of points V_{j} generated by the deflection construction on a digon [$\mathrm{M}_{0}, \mathrm{M}_{1}$] with $\mathrm{d}=72^{\circ}=2 \pi / 5$ (shown in Figure 2) leads to a pair of regular pentagrams Q_{i}.

Figure 5. The sequence of the W_{j} 's in case of $\mathrm{n}=4$ and deflection $\delta=22.5^{\circ}=\pi / 8$ leads to four squares Q_{i}.

Figure 6. If $\mathrm{n}=3$ and $\delta=36^{\circ}=\pi / 5$, the polygons Q_{i} are regular pentagons.

Figure 7. For $\mathrm{n}=4$ and $\delta=27^{\circ}=3 \pi / 20$, the resulting polygons Q_{i} are decagrams $\{10 / 3\}$.
(c) The original sequence $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots$, can also be considered periodic, with period kn.
(d) The centers C_{i} of the polygons Q_{i} are independent of the choice of V_{0}, and depend only on the n -gon P . Taking C_{0} as V_{0}, the resulting polygonal line $\left[\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots\right]$ closes after only n steps. This can be interpreted as meaning that with period kn for the vertices V_{i}, each of the n polygons Q_{i} shrank to a single point.
(e) For each n there is a singular value of δ, for which the above applies only in a modified (or limiting) way; this is illustrated in Figures 8 and 9. The singular value is $\delta=\pi / \mathrm{n}$ for odd n , and $\delta=2 \pi / \mathrm{n}$ for even n . What happens in the singular cases is that instead of the polygons formed by the W_{j} points, they are equidistant on (straight) rays - forming n what may be called apeiro-rays or, if extended backwards, apeirogons.

These apeiro-rays are equi-inclined, and their directions and the step (equal on all) is determined by P , while their position depends on the starting point $V_{0}=W_{0}$. For even n the rays come in anti-parallel pairs. Also, in case P is a regular polygon, the step is of zero length, so each apeiro-ray collapses to a point (of infinite multiplicity), and the resulting n points can be interpreted asof zero length, so each apeiro-ray collapses to a point (of infinite multiplicity), and the resulting n points can be interpreted as being a sequence of period n, as illustrated for $n=4$ in Figure 10.

Figure 8 . The case $\mathrm{n}=4$ and $\delta=\pi / 2$ leads to two pairs of antiparallel apeiro-rays.

Figure 9. The five apeiro-rays in case $\mathrm{n}=5$ and $\delta=\pi / 5$.

Figure 10. For regular polygons (here $n=4$), in the singular case $\delta=2 \pi / n$ the apeiro-rays collapse to a single point each, indicated by the large dots.

Acknowledgment. A stay at the Helen Riaboff Whiteley Center at the Friday Harbor Laboratories of the University of Washington provided the atmosphere and conditions which made this work possible.

References.

[1] B. Grünbaum, Polygons: Meister was right and Poinsot was wrong but prevailed. Beiträge zur Algebra und Geometrie 53 No.1(2012), $57-71$.
[2] B. Grünbaum, Inversion of the "midpoint polygon" construction. Geombinatorics 21(2012), 89-96.
[3] B. Grünbaum, Midpoint polygon inversion revisited. Geombinatorics .

