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A simple construction described in [2] and [3] leads to unex-
pectedly varied outcomes. The basic step of the construction is in-
dicated in Figure 1(a). Given two points M and V, mirror V in M
to obtain V’. This can be formalized by V' = 2M — V. The con-
struction in [2] consists in selecting as points M successively the
vertices My, My, ...M,, Myy1 = M, of an n-gon P. Starting from an
arbitrary point V = Vj, a sequence of points V; is obtained by ap-
plying the basic step with vertex M; to point Vi, already con-
structed. As shown in more detail in [2], there are the following
possibilities, assuming that P is not reduced to a point:

(1) If n 1s even, then either the points V; are the vertices of
an n-gon for every choice of Vy, or else these points are equidistant
on a ray (half apeirogon). The former happens if and only if P is
such that the centroid of the even-labeled M;’s coincides with the
centroid of the odd-labeled ones.

(1))  If n is odd, the sequence of V;’s repeats after 2n steps
regardless of V¢ and P; however, for a certain choice of V, unique
for every P, the sequence of V; repeats already after n steps.

In the present note we shall investigate a generalization of this
construction. The basic step is illustrated in Figure 1(b). As before,
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Figure 1. The basic steps in the constructions described.



we are given two points M and V, but now also a positive real
number &; we mirror V in M to obtain V’, and then rotate V’ about
M through the angle 0 resulting in V*. The angle & (measured in
radians or degrees) is called the deflection of the construction; as is
customary, deflection is defined as the angle between the extension
of an edge and the next edge. This can be formalized as
VE=M+(V-M)e®P' =M+ (V-MA (%)

where the points are taken in the complex plane and A = ¢,

Clearly, the topic of [2] corresponds to the deflection & = 0;
from now on we shall assume 8 # 0.

Given a polygon P = [M;, M,, ... , My] and a deflection 9, in
analogy to the procedure in [2], we start with a point V = V, and
construct a sequence of points by applying the basic step to Vi,
and M; to obtain V;, j=1, 2,..., and with subscripts of the vertices
M; reduced mod n. When appropriate, we may extend the con-
struction backwards, to obtain a 2-way sequence of V;’s.

As illustrated in Figures 2 and 3, the sequence of V;’s appears
to jump all over the plane. However, we shall see that there is an
interesting order in the sequence.

Simple computations yield:

Vi-M=(Vo-M) A,

Figure 2. Illustration of case n = 2, deflection 6 = 72° = 2n/5;
only some of the Vj’s are labeled.



Figure 3. Illustration of case n = 4, deflection & = 22.5° = /8.

Vo—-My=(Vi—My)A=(Vo—M)) A2+(M2—M1) A
giving by induction, for all k > 1,
Vie— Mic= (Vo — M) A"+ 2 <t (M — Mjip) A
It follows that
Vo= Vo= (Vo-MDA" + ) << n 1 (MM )A™ ! (A-1) +

+MA -V, (**)
hence
Vo Vo= (Ve MDA 241 < <on 1 (MM A (A1) +
+MA -V,

But M;+j = M,;, thus
Vo=V, = (Vn_Ml)An + 21 <j< n—l(Mj_MjH)An-j-l(A_l) +

+M;A-V,.
Therefore
V2n_Vn = (Vn - VO)An . (**)

The equation (**) has a very simple meaning. We denote W; =
V., and interpret the sequence W; as the vertices of a polygonal
line Q = [Wo, Wy, ..., W;, ...]. Then (**) and (*) imply that all



edges of Q have the same length, and that at each vertex the deflec-
tion is the same — namely, nd or nd + t depending on whether n is
even or odd. Therefore, the polygonal line Q either repeats after a
finite number of steps, or else it never repeats. The former happens
if § is a rational multiple of n, otherwise we have the second possi-
bility. Hence:

(i)  If § is an irrational multiple of 7, then the sequence Q is a
cyclic apeirogon. By this we mean a concyclic infinite sequence of
points, adjacent points of the sequence being at a constant distance.
This denumerable sequence is dense in the circle — hence not rep-
resentable in a graphically meaningful way, — but it is of special
character due to the equidistance of the adjacent pairs. Also, see
the exception discussed in (e) below.

(iv)  If & = mg/r, where g/r is a fraction in reduced form, Q is an
equilateral polygon with deflection at each vertex constant and
equal to mng/r or m(1+ nqg/r), depending on whether n is even or
odd. Thus Q is a regular polygon, of a certain type {k/d}. Again,
there is an exception discussed below in (e).

This is illustrated in Figures 4, 5, 6 and 7. More precisely, by
equation (**), for even n the deflection at each vertex of {k/d} is
2nd/k, hence we have 2d/k = nq/r, or k/d = 2r/nq, so Q is the poly-
gon {2r/nq}. For odd n we have 2d/k =1 + ng/r, hence k/d=
2r/(nq + r) and Q is the polygon {2r/(nq +1)}.

Naturally, we may interpret the vertices of Q as either an infi-
nite sequence of vertices that is periodic with period 2r so that each
vertex of Q represents infinitely many points of the sequence of
W;’s, or else consider just one period of this sequence. However,
even in the latter case, there may be repeated vertices. For exam-
ple, if n =3 and & = 24° = 2a/15, the k/d = 30/21, and the 30 verti-
ces of Q are represented by the 10 vertices of {10/7}, each ac-
counting for three of the 30 vertices of Q. For more details about
polygons {k/d} with k and d not coprime see, for example, [1].

Several comments seem appropriate and are illustrated by the
figures.



(a) Each of the points V; can be interpreted as leading to a
polygon Q; congruent to Q = Q. Thus the complete picture con-
tains n polygons Q;.

(b) In case {k/d} = {2} the polygons Q; have to be interpreted
as digons, each represented by a segment.
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Figure 4. The rather chaotic appearing sequence of points V;
generated by the deflection construction on a digon [My, M;] with
d =72° =2n/5 (shown in Figure 2) leads to a pair of regular penta-

grams Q;.
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Figure 5. The sequence of the W;’s in case of n = 4 and deflec-
tion § = 22.5° = 7/8 leads to four squares Q;.



Figure 6. If n =3 and 8 = 36° = @/5, the polygons Q; are regular
pentagons.

Figure 7. For n =4 and d = 27° = 3w/20, the resulting polygons Q; are
decagrams {10/3}.



(¢) The original sequence Vo, Vi, Va, ..., can also be consid-
ered periodic, with period kn.

(d) The centers C; of the polygons Q; are independent of the
choice of V, and depend only on the n-gon P. Taking Cy as Vy, the
resulting polygonal line [V, Vi, Va, ... ] closes after only n steps.
This can be interpreted as meaning that with period kn for the ver-
tices Vi, each of the n polygons Q; shrank to a single point.

(e) For each n there is a singular value of §, for which the
above applies only in a modified (or limiting) way; this is illus-
trated in Figures 8 and 9. The singular value is & = m/n for odd n,
and 0 = 27/n for even n. What happens in the singular cases is that
instead of the polygons formed by the W; points, they are equidis-
tant on (straight) rays — forming n what may be called apeiro-rays
or, if extended backwards, apeirogons.

These apeiro-rays are equi-inclined, and their directions and
the step (equal on all) is determined by P, while their position de-
pends on the starting point Vo = Wy. For even n the rays come in
anti-parallel pairs. Also, in case P is a regular polygon, the step is
of zero length, so each apeiro-ray collapses to a point (of infinite
multiplicity), and the resulting n points can be interpreted asof zero
length, so each apeiro-ray collapses to a point (of infinite multi-
plicity), and the resulting n points can be interpreted as being a se-

quence of period n, as illustrated for n =4 in Figure 10.
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Figure 8. The case n = 4 and d = 7/2 leads to two pairs of anti-
parallel apeiro-rays.
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Figure 9. The five apeiro-rays in case n = 5 and d = 7/5.
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Figure 10. For regular polygons (here n = 4), in the singular
case O = 2m/n the apeiro-rays collapse to a single point each, indi-
cated by the large dots.
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