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A simple construction described in [2] and [3] leads to unex-
pectedly varied outcomes. The basic step of the construction is in-
dicated in Figure 1(a). Given two points M and V, mirror V in M 
to obtain V’. This can be formalized by V’ = 2M – V. The con-
struction in [2] consists in selecting as points M successively the 
vertices M1, M2, …Mn, Mn+1 = M1 of an n-gon P. Starting from an 
arbitrary point V = V0, a sequence of points Vj is obtained by ap-
plying the basic step with vertex Mj to point Vj-1 already con-
structed. As shown in more detail in [2], there are the following 
possibilities, assuming that P is not reduced to a point: 

(i) If n is even, then either the points Vj are the vertices of 
an n-gon for every choice of V0, or else these points are equidistant 
on a ray (half apeirogon). The former happens if and only if P is 
such that the centroid of the even-labeled Mj’s coincides with the 
centroid of the odd-labeled ones. 

(ii) If  n  is odd, the sequence of Vj’s repeats after 2n steps 
regardless of V0 and P; however, for a certain choice of V0, unique 
for every P, the sequence of Vj repeats already after  n  steps. 

In the present note we shall investigate a generalization of this 
construction. The basic step is illustrated in Figure 1(b). As before, 
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Figure 1. The basic steps in the constructions described. 
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we are given two points M and V, but now also a positive real 
number δ; we mirror V in M to obtain V’, and then rotate V’ about 
M through the angle δ resulting in V*. The angle δ (measured in 
radians or degrees) is called the deflection of the construction; as is 
customary, deflection is defined as the angle between the extension 
of an edge and the next edge. This can be formalized as  

V* = M + (V – M)e (δ+π) i = M + (V – M)Δ         (∗) 
where the points are taken in the complex plane and Δ = e(δ+π)i. 

Clearly, the topic of [2] corresponds to the deflection δ = 0; 
from now on we shall assume δ ≠ 0. 

Given a polygon P = [M1, M2, … , Mn] and a deflection δ, in 
analogy to the procedure in [2], we start with a point V = V0 and 
construct a sequence of points by applying the basic step to Vj-1 
and Mj  to obtain Vj,  j = 1, 2,…, and with subscripts of the vertices 
Mj reduced mod n.  When appropriate, we may extend the con-
struction backwards, to obtain a 2-way sequence of Vj’s. 

As illustrated in Figures 2 and 3, the sequence of Vj’s appears 
to jump all over the plane. However, we shall see that there is an 
interesting order in the sequence. 

Simple computations yield: 
V1 – M1 = (V0 – M1) Δ , 
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Figure 2.  Illustration of case n = 2, deflection δ = 72° = 2π/5; 

only some of the  Vj’s are labeled. 
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Figure 3. Illustration of case n = 4, deflection δ = 22.5° = π/8.  

V2 – M2 = (V1 – M2) Δ = (V0 – M1) Δ2 + (M2 – M1) Δ 
giving by induction, for all k ≥ 1, 

Vk – Mk = (V0 – M1) Δk + Σ1 ≤ j ≤ k–1 (Mj – Mj+1) Δk-j. 
It follows that 

Vn – V0 = (V0–M1)Δn + Σ1 ≤ j ≤ n–1(Mj–Mj+1)Δn-j-1(Δ–1) + 
                + M1Δ – V0,     (**) 
hence 
V2n–Vn = (Vn–M1)Δn

 + Σn+1 ≤ j ≤ 2n–1(Mj–Mj+1)Δ2n-j-1(Δ–1) +  
               + M1Δ –Vn. 

But Mn+j = Mj, thus 

V2n–Vn = (Vn–M1)Δn + Σ1 ≤ j ≤ n–1(Mj–Mj+1)Δn-j-1(Δ–1) +  
               + M1 Δ –Vn. 

Therefore 
 V2n–Vn = (Vn – V0)Δn .    (**) 

The equation (**) has a very simple meaning. We denote Wj = 
Vnj and interpret the sequence Wj as the vertices of a polygonal 
line Q = [W0, W1, … , Wj, …].  Then (**) and (*) imply that all 
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edges of Q have the same length, and that at each vertex the deflec-
tion is the same – namely, nδ or nδ + π depending on whether n is 
even or odd.  Therefore, the polygonal line Q either repeats after a 
finite number of steps, or else it never repeats. The former happens 
if δ is a rational multiple of π, otherwise we have the second possi-
bility. Hence: 
(iii)  If δ is an irrational multiple of π, then the sequence Q is a 
cyclic apeirogon. By this we mean a concyclic infinite sequence of 
points, adjacent points of the sequence being at a constant distance. 
This denumerable sequence is dense in the circle – hence not rep-
resentable in a graphically meaningful way, – but it is of special 
character due to the equidistance of the adjacent pairs. Also, see 
the exception discussed in (e) below. 
(iv)  If δ = πq/r, where q/r is a fraction in reduced form, Q is an 
equilateral polygon with deflection at each vertex constant and 
equal to πnq/r or π(1+ nq/r), depending on whether n is even or 
odd. Thus Q is a regular polygon, of a certain type {k/d}. Again, 
there is an exception discussed below in (e). 

This is illustrated in Figures 4, 5, 6 and 7. More precisely, by 
equation (**), for even n the deflection at each vertex of {k/d} is 
2πd/k, hence we have 2d/k = nq/r, or k/d = 2r/nq, so Q is the poly-
gon {2r/nq}. For odd  n  we have  2d/k = 1 + nq/r,  hence      k/d = 
2r/(nq + r) and Q is the polygon {2r/(nq + r)}. 

Naturally, we may interpret the vertices of Q as either an infi-
nite sequence of vertices that is periodic with period 2r so that each 
vertex of Q represents infinitely many points of the sequence of 
Wj’s, or else consider just one period of this sequence. However, 
even in the latter case, there may be repeated vertices. For exam-
ple, if n = 3 and δ = 24° = 2π/15, the k/d = 30/21, and the 30 verti-
ces of Q are represented by the 10 vertices of {10/7}, each ac-
counting for three of the 30 vertices of Q. For more details about 
polygons {k/d} with k and d not coprime see, for example, [1]. 

Several comments seem appropriate and are illustrated by the 
figures. 
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(a)   Each of the points Vi can be interpreted as leading to a 
polygon Qi congruent to Q = Q0. Thus the complete picture con-
tains n polygons Qi. 

(b)   In case {k/d} = {2} the polygons Qi have to be interpreted 
as digons, each represented by a segment. 

 
Figure 4. The rather chaotic appearing sequence of points Vj 

generated by the deflection construction on a digon [M0, M1] with 
d = 72° = 2π/5 (shown in Figure 2) leads to a pair of regular penta-
grams Qi. 
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Figure 5. The sequence of the Wj’s in case of n = 4 and deflec-

tion δ = 22.5° = π/8 leads to four squares Qi. 
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Figure 6. If n = 3 and δ = 36° = π/5, the polygons Qi are regular 

pentagons. 

 
Figure 7. For n = 4 and δ = 27° = 3π/20, the resulting polygons Qi  are 

decagrams {10/3}. 



 7 

(c)    The original sequence V0, V1, V2, … , can also be consid-
ered periodic, with period kn. 

(d)   The centers Ci of the polygons Qi are independent of the 
choice of V0, and depend only on the n-gon P. Taking C0 as V0, the 
resulting polygonal line [V0, V1, V2, … ] closes after only n steps.  
This can be interpreted as meaning that with period kn for the ver-
tices Vi, each of the n polygons Qi shrank to a single point. 

(e)   For each n there is a singular value of δ, for which the 
above applies only in a modified (or limiting) way; this is illus-
trated in Figures 8 and 9. The singular value is δ = π/n for odd n, 
and δ = 2π/n for even n. What happens in the singular cases is that 
instead of the polygons formed by the Wj points, they are equidis-
tant on (straight) rays – forming n what may be called apeiro-rays 
or, if extended backwards, apeirogons.  

These apeiro-rays are equi-inclined, and their directions and 
the step (equal on all) is determined by P, while their position de-
pends on the starting point V0 = W0. For even n the rays come in 
anti-parallel pairs. Also, in case P is a regular polygon, the step is 
of zero length, so each apeiro-ray collapses to a point (of infinite 
multiplicity), and the resulting n points can be interpreted asof zero 
length, so each apeiro-ray collapses to a point (of infinite multi-
plicity), and the resulting n points can be interpreted as being a se-
quence of period n, as illustrated for n = 4 in Figure 10. 
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Figure 8. The case n = 4 and δ = π/2 leads to two pairs of anti-

parallel apeiro-rays. 
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Figure 9. The five apeiro-rays in case n = 5 and δ = π/5. 

 
Figure 10. For regular polygons (here n = 4), in the singular 

case  δ = 2π/n the apeiro-rays collapse to a single point each, indi-
cated by the large dots. 
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