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Abstract. We find a common extensions to general polygons of the 
classical results concerning in- and excircles of triangles, and in-
circles of convex polygons. 
 

Incircles (inscribed circles) and their centers (incenters) of tri-
angles are well-known parts of traditional elementary geometry. 
The properties of incenters as point-valued functions of triangles 
are in some ways similar to the properties of circumcenters, al-
though in other ways they are quite different.  The similarity starts 
with the well-known result that for a triangle T the incenter I = 
I(T), the area centroid A = A(T) and the perimeter centroid P = 
P(T) are collinear, and that the ratio of IA to AP is  2, or, in vector 
notation, that I = 3A – 2P.  (See [6, p. 225].)  This is analogous to 
the more familiar relation between the orthocenter, area centroid 
and circumcenter of the triangle on the Euler line. 

Since the area A(Q) and perimeter of P(Q) of a quite general 
polygon  Q  depend only on  Q,  one can define an "incenter point" 
I(Q) for Q by taking  I(Q) = 3 A(Q) – 2 P(Q) (again as vectors).  An 
indication that this definition may be appropriate can be found in 
the following result of Brassine [2] (published in 1843; the paper 
was forgotten until Shephard's paper [7] in 1990): 

Theorem 1.  Let Q be a convex n-gon all edges of which are 
tangent to a circle with center I. Then the area centroid A and the 
perimeter centroid P of Q are collinear with I, and  I = 3A – 2P. 

Proof. (This is Brassine's proof, as reproduced by Shephard.)  
Let Q be divided into n triangles, each of which has I as a vertex 
and one edge of Q as its base; see Figure 1.  To each vertex of each 
of these triangles a mass proportional to the area of the triangle is 
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assigned. Since the polygon has an incircle, all the triangles have 
the same height, thus these masses are also proportional to the 
lengths of the bases.  Then the centroid of all  3n  masses is the 
point  A,  the centroid of the  n  masses at  I  is  I  itself, and the 
centroid of the remaining  2n  masses is the point P.  Hence  A  di-
vides the segment  [I, P]  in ratio  2 : 1,  as claimed. 

As an immediate consequence of Theorem 1 we see that the 
above definition of incenter point I(Q) satisfies two conditions: (i) 
It is defined for all convex polygons Q; and (ii) I(Q) coincides with 
the incenter of Q if Q has an inscribed circle.  Moreover, Theorem 
1 holds even in the more general case of "monotone" polygons; 
these are polygons for which the deflection (change of direction of 
edges) at each vertex is positive.  An example is shown in Figure 
2.  It may be worth mentioning that such polygons were considered 
"convex" by some 19th century writers. 

 
Figure 1.  The division of a polygon with incircle into triangles, 

as used in the proof of Theorem 1. 
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Figure 2.  A monotone non-simple hexagon with an incircle.  

Theorem 1 is valid for such polygons. 
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In order to extend the above to general polygons, we need 
some definitions.  A polygon Q is a cyclically ordered (oriented) 
sequence of points V1, V2, ..., Vn together with the closed segments 
(edges of Q) [Vi,Vi+1] for all i = 1, ..., n (here and throughout sub-
scripts are understood mod n). In order to avoid lengthy explana-
tions we shall assume that the vertices Vi are completely arbitrary, 
except for stipulating that no two of the edges are collinear. Each 
such polygon Q defines also an arrangement of lines in the plane. 
By this we understand the partition of the plane into open convex 
regions formed by the complement of the union of the sides of Q, 
that is, the lines determined by the edges of Q.  This is illustrated 
in Figure 3. (Concerning arrangements of lines see [4]. See also 
remark (ii) below.) 

 Many nonconvex polygons have a touched circle C generaliz-
ing the incircle; a circle C is said to be "touched" by Q if each side 
of Q is tangent to C. This is a generalization of the excircles of a 
triangle. Several examples are shown in Figure 4. In fact, a poly-
gon Q may have more than one touched circle, see Figure 5.  We 
call the center of a touched circle C a t-center of  Q. For a triangle 
Q the set of t-centers of Q consists of the traditional incenter to-
gether with the three "excenters". 

 
Figure 3. The arrangements generated by a triangle and a quadri-

lateral. 
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Figure 4.  Examples of quadrangles and a (non-monotone) hep-

tagon that have a touched circle, but no inscribed circle. 

 
Figure 5.  Examples of convex and nonconvex quadrangles 

with two touched circles. 
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Theorem 2. If Q is a polygon with a touched circle C and t-center 
T of Q, and if Q has a suitably defined centroid of area A and a 
centroid of perimeter P, then T = 3A – 2P. 

Proof. We are dealing with oriented polygons Q. If the direc-
tion of an edge E of Q, as viewed from T, is positive (counter-
clockwise) – then the area of the triangle determined by E and T is 
taken as positive, and so is the length of T. If the direction of E 
(seen from T) is negative, then both the area and the length are 
taken as negative. This explains the meaning of "suitably" in the 
formulation of the theorem. Then the remaining part of proof coin-
cides with that of Brassine.  

Remarks. 

(i)   The pericenter is also known as the Nagel point ([6, p. 225]) 
and as the "verbicenter" [e.g. [3]). 

(ii)  The concept of "sides" of a triangle (or n-gon) permeates much 
of elementary geometry, altough without being given a proper 
name or recognition. This is probably due to Euclid's not consider-
ing (infinite) lines, but only arbitrarily extendable segments. 
Among the oldest examples of the use of "sides" is in the theorem 
of Menelaus, and in connection with excircles. From a different 
point of view the sets of sides of polygons may be considered as a 
generalization of Hamiltonian multilaterals in configurations, see 
Section 5.2 of [5]. 

(iii)  The possibility of several t-circles of a polygon Q is 
explained by the fact that A and P depend on orientation of the 
sides (or edges) of Q with respect to the t-center.  

(iv)  It is easy to see that for every proper (not collapsed) triangle 
there are precisely four t-circles – the incircle and the three excir-
cles. However, for any quadrangle there are at most two t-circles, 
and for any polygon with five of more sides there is at most one. 

(v)  The requirement that A and P exist is obviously necessary for 
the proof. However, it is possible for a touched circle to exists even 
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if the area and perimeter are 0, hence the centroids A and P are not 
defined. Examples of this situation are the middle quadrangle in 
Figure 4 and the right-most one in Figure 5. 

(vi)  The equation T = 3A – 2P may be used to construct a point 
we call k-center (quasicenter K = K(Q,O) of Q w.r.t. O) starting 
from an arbitrary point O not on any side of Q. Since the signs of 
the lengths of edges depends of the position of the point O with re-
spect to the sides of Q, we find that each of the regions of the ar-
rangement generated by sides of Q will yield (in general) a differ-
ent value of the perimeter p(Q,O) of Q, hence lead to a different 
pericenter P = P(Q,O) and a different k-center K = 3A – 2P.  The 
area of Q and its centroid A do not depend on O. It follows from 
the proof that as long as O stays within a given region of the ar-
rangement, the point P and therefore the k-center K will not 
change. Hence if the region in which we consider K(Q,O) contains 
a t-center T, then T will coincide with K(Q,O) for every O in that 
region.  It should also be mentioned that if two choices for the 
point O are separated by every side of Q, then they lead to the 
same k-center, since both the area and the perimeter change sign. 

(vii)  As an additional consequence of the Brassine proof we see 
that it is reasonable to define an inradius i(Q,O) corresponding to 
the k-center  K(Q,O) by i(Q,O) = 2 area(Q)/p(Q,O).  If Q is a tri-
angle, this gives the well-known formulas for the inradius and the 
exradii.  In general, if O is in a region that corresponds to a 
touched circle (such as O1 in Figure 6), this expression for i(Q,O) 
gives the radius of this circle; otherwise it gives a radius for a cir-
cle centered at  K(Q,O).  In either case, we may call a circle cen-
tered at  K(Q,O)  and with radius  i(Q,O)  a k-circle of  Q.  Proba-
bly, each k-circle possesses some extremal property.  However, I 
do not know what property – if any – this is.   

 The above is illustrated in Figure 6; to avoid clutter, only a few 
points O and the corresponding k-centers and k-circles are shown.  
It should be noted that the points O3 and O4 yield the same  
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Figure 6.  Three of the incircles of the quadrangle  Q = [V1, 

V2, V3, V4].  Shown are the incenters and the pericenters that cor-
respond to the points  O1, O2, O3, O4  chosen.  The last two of 
these points are separated by every side of  Q;  hence  I(Q,O3) = 
IQ,O4)  but  i(Q,O3) = –i(Q,O4).  By convention, we usually inter-
pret the radius as the absolute value of the expression obtained. 
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k-center, K(Q,O3) = K(Q,O4).  However, i(Q,O3) = – i(Q,O4). As 
mentioned earlier this is a general phenomenon.  Hence it may be 
appropriate to use the absolute value for the radius – or else deal 
with oriented circles. 

(viii)  Incircles and excircles of triangles are well known and 
results on them are widely available, in print and on the Web. Most 
of the analogous literature on polygons with more than three sides 
deals with quadrangles only, quite frequently restricted to convex 
ones. A few writers discuss touched circles of general quadrangles.  
Bogomolny [1] calls them exscriptible, while in [8] ex-tangential 
is used in conection with convex quadrangles. However, none of 
the literature I have seen mentions the possibility of a quadrangle 
having two touched circles. 
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