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In the present note we discuss some properties of a 'measure of asymmetry' of
convex bodies in 7i-dimensional Euclidean space. Various measures of asymmetry
have been treated in the literature (see, for example, (1), (6); references to most of
the relevant results may be found in (4)). The measure introduced here has the somewhat
surprising property that for n ^ 3 the n-simplex is not the most asymmetric convex
body in En. I t seems to be the only measure of asymmetry for which this fact is known.

Let K be a convex body in En, G its centroid and let V{K) denote the %-dimensional
volume of K. Let H be a half-space such that K does not meet mtH. We denote the
'mirror image' of H in the point G by H* = 2G+( — H). Furthermore, we define

KH = K n H*

as the intersection of K with the half-space H*. The measure of asymmetry A(K) of
K is now defined by ., „ . T7/ T7- ,, T7/ T,,

3 A{K) = max V{KH)jV(K),
H

the maximum being taken over all half-spaces such that K r> int H = <f>. We also put

An = suj>{A(K)\K a convex body in En).
I t is obvious that A{K) is an affine invariant of K, that A(K) = 0 if and only if

K is centrally symmetric and that An ^ £ for each n. Using the affine invariance and
continuity of A(K) and the compactness of the space of classes of affinely equivalent
convex bodies in En (see (5)), it is not difficult to see that for each n there exists a K
with An = A(K). (The same result will follow from the proof of Lemma 1.)

Let Cn = Cn(0) denote a straight cone in En whose base is an (n— l)-dimensional
ball. For any x with 0 < x < 1 let Cn(x) denote the truncated cone obtained from Cn

by cutting off (by means of a hyperplane parallel to the base of Cn) the upper xth
part of Cn.

We now have

LEMMA 1. For each K <=-En there exists an x such that A{K) < A(Gn{x)).
Proof. Let H be a half-space such that V(KH) is maximal and let L be a straight line

passing through G and perpendicular to the hyperplane Bdi7. Let £ be the convex
body obtained from K by spherical symmetrization ('Schwarzsche Abrundung'
((2), p. 71); Schwarz rotation process ((2), p. 100)) with respect to the line L as axis. By
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the properties of spherical symmetrization, obviously A (K) s£ A(R). LetP* = Bd#*
denote the hyperplane obtained by mirroring P = Bd H in G. It is possible to construct
a truncated cone S with one base on P and with the line L for axis, which intersects
P* in P* n R and satisfies

V(S)=V(K), V(SnH*)=V(KH).

The truncated cone S is narrower than the supporting cone of R at P* n R in the region
between P* and P, and broader in H*. Hence, the centroid of the part of S that lies
between P* and P will be nearer to P than the centroid of the corresponding part
of R, and the same holds true for the parts in H*. Altogether, the centroid of S will
be nearer to P than will G, unless of course R itself was a truncated cone. But this
implies that

A{K) s£ A(S) = A(Cn(x)) for some x.

Equality can only hold if K is a truncated cone. Lemma 1 is thus proved.

LEMMA 2. A(Cn(x)) =
We omit the elementary computations that prove Lemma 2.

REMARK 1. It is easily seen that, for each fixed n, the limit lim A(Cn(x)) exists and

equals 0. Therefore Lemma 1 implies that An = max A(Cn(x)).
O l

THEOREM 1. A2 = £. The only convex sets K <=• E2 with A(K) = A2 are triangles.
Proof. By the above remark and by Lemma 2,

A2 = max (1 8rr3 \

y y(i + x) /

On the other hand, it follows from the proof of Lemma 1 that (in the notations used
there) A(K) < A(C2(x)) for some x, unless R = C2(x). Thus, if A{K) = A2 it follows
that R = C2(0), which is a triangle; but then K is also a triangle. This ends the proof of
Theorem 1.

It is, obviously, possible to determine An by finding the maximum of A(Cn(x))
given by Lemma 2. The resulting algebraic equations do not seem to be solvable in
closed form for n > 2. For n = 3 the approximate value is Az = 0-1254..., which is
attained as A(C3(x)) for z = 0-2....

The behaviour of An and of A(Cn(x)) for n > 2 is quite complicated. By routine
computations the following statements may be verified:

(1) lim A(Cn(x)) = e~2 for each x in 0 ^ x < 1.

(2) Ifn > 3 then

1 /n+ l\n

and for each x satisfying 0 < x < 1 -I 1
2n \n — 1/



On a measure of asymmetry of convex bodies 219

we have

/n-l 2nxn{\-x
\n+l n + l

n
>

Therefore, not only is A(Cn(0)) < An but the minimal x > 0 such that

A(Gn(0)) > A(Cn(x))
tends to 1 with increasing n.

THEOREM 2. The sequence An is strictly increasing and

n-s-oo

= max [-y + exp ( -2 - 2 ^ l o g y ) l / ( l -y ) = 0-143 ...
0<J/<1 L \ l~V / j /

(> Urn A(Cn(0)) = e~2 = 0-135...).

Proof. In order to establish that An < An+1, let S b e a truncated ^.-dimensional
cone such that An = A(S) and let Hs be the corresponding 'maximal half space',
containing one of the bases of S. In En+1 = En + E1, let K be the Cartesian product of
8 <= En <= En+1 and a segment / <= E1 and let H be the product of Hs and E1. Clearly,
A(S) < -4(-K )̂. But the symmetrization R of K cannot be a truncated cone in En+1,
since its cross-sectional area, taken perpendicular to its axis, grows only as that of a
truncated cone in En, i.e. as a polynomial of one degree too low. Hence by the proof of
Lemma 1, An+1 is strictly greater than An.

The determination of Km An is slightly more complicated, especially in view of the
above remark (1). We define

For each y, 0 ^ y < 1, the limit A(y) = lim A(n, y) is easily seen to exist and to be
given by the expression n~>0°

For y ->• 1, both A(n, y) and A(y) tend to the limit 0. Now, we define in the square
D = {(«/, z)| 0 < y < 1, 0 ̂  z < 1} a function f(y, z) by means of the conditions

/(y,l/») = A{n,y) for ( n = l , 2 , . . . )

and for z = A/(n +1) + (1 - A) (1/n) with 0 ^ A < 1,

f(y,z) =
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Then f(y, z) is continuous in D, hence it achieves its maximum somewhere in D.
The maximum will certainly not be achieved in the interior of D, since given
(y, z) e int D we can find an integer n such that z > Ijn and then the inequality

f{y,z) < max/ft 1/ra) = An

holds, because of the first part of Theorem 2 and the definition off(y, z). Hence f{y, z)
achieves its maximum on the boundary of D. However, only on the side z = 0 of D
does/possess values exceeding e~2. Therefore

KvtxAn = max/(y,0) = max A(y),
0 « « 0S

as claimed. In order to determine lim.4n numerically, we observed that -4(0) = 0 and
A(\) = e~2. In the open interval 0 < y < 1 the function A(y) is differentiable and its
derivative has only one zero, which is assumed for y0 satisfying

i.e. y0 = 0-0435 ..., which yields MmAn = 0-143 .... This ends the proof of Theorem 2.
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