EQUIPARTITE POLYTOPES*

BY
Branko Grünbaum
Department of Mathematics, University of Washington
Seattle, WA 98195, United States
e-mail: grunbaum@math.washington.edu
AND
TomÁŠ KAISER**
Department of Mathematics and Institute for Theoretical Computer Science, University of West Bohemia
Univerzitní 8, 30614 Plzeñ, Czech Republic
e-mail: kaisert@kma.zcu.cz
AND
Daniel Král ${ }^{\dagger}{ }^{\dagger}$
Institute for Theoretical Computer Science (ITI), Charles University
Prague 1, Czech Republic
e-mail: kral@kam.mff.cuni.cz
AND
Moshe Rosenfeld ${ }^{\dagger \dagger}$
Computing and Software Systems Program, University of Washington Tacoma, WA 98402, United States
e-mail: moishe@u.washington.edu

[^0]Received June 11, 2008 and in revised form November 10, 2008

Abstract

A polytope P with $2 n$ vertices is called equipartite if for any partition of its vertex set into two equal-size sets V_{1} and V_{2}, there is an isometry of the polytope P that maps V_{1} onto V_{2}. We prove that an equipartite polytope in \mathbb{R}^{d} can have at most $2 d+2$ vertices. We show that this bound is sharp and identify all known equipartite polytopes in \mathbb{R}^{d}. We conjecture that the list is complete.

1. Introduction

Classification of polytopes possessing a variety of symmetries has been extensively studied: centrally symmetric polytopes, vertex transitive polytopes, selfdual polytopes are few such examples. In this paper, we study a new kind of symmetry: equipartiteness. Its definition is included in the abstract. Examples of equipartite d-polytopes include rectangles, squares and hexagons (two types) in \mathbb{R}^{2}, various tetrahedra, regular octahedra, regular three-sided prisms, rectangular boxes, in \mathbb{R}^{3}, regular simplices in $\mathbb{R}^{2 k+1}$ and more. A complete list of all equipartite polytopes in \mathbb{R}^{2} and \mathbb{R}^{3} is described in Section 4.

In Section 3, we prove that the number of vertices of an equipartite d-polytope is at most $2 d+2$ and, later in Section 5 , we show that the bound is tight by constructing equipartite d-polytopes with $2 d+2$ vertices for every $d \geq 2$. When restricting the definition of equipartiteness of polytopes to their 1 -skeletons, we are naturally led to the notion of equipartite graphs:

Definition 1: A graph G of order $2 n$ is equipartite if for every n-element subset A of its vertices, there is an automorphism of G mapping A to its complementary set of vertices.

All equipartite graphs of order six and eight are depicted in Figures 1 and 2.

A full characterization of equipartite graphs was obtained in [5]. For every $n \neq 4$ there are 8 equipartite graphs of order $2 n: K_{2 n}, 2 K_{n}, 2 K_{n}+n K_{2}$, $K_{2 n} \backslash n K_{2}$ and their complements. There are 10 equipartite graphs of order 8. These graphs play a pivotal role in limiting the number of vertices in equipartite d-polytopes and their structures. Curiously, all equipartite graphs appear as orbits in equipartite polytopes.

$6 K_{1}$

K_{6}

$3 K_{2}$

$K_{6} \backslash 3 K_{2}$

$K_{3,3} \backslash 3 K_{2}$

$2 K_{3}+3 K_{2}$

$2 K_{3}$

$K_{3,3}$

Figure 1. Equipartite graphs of order six.

Figure 2. Equipartite graphs of order eight.

2. Definitions and notation

We use standard graph theory terminology which can be found, e.g., in [10]. A union of k vertex-disjoint copies of a graph G is denoted by $k G$. We write $G+H$ for an edge-disjoint union of two graphs G and H on the same vertex set; the graph $G+H$ will always be well-defined by the graphs G and H. Similarly, $G \backslash H$ stands for a graph obtained from G by removing a subgraph isomorphic to H. Again, the graph $G \backslash H$ will always be well-defined by the graphs G and H. This notation is used in Figures 1 and 2.

The d-dimensional Euclidean space is denoted by \mathbb{R}^{d}. A d-polytope is a convex hull of some $n \geq d+1$ points of \mathbb{R}^{d} which are not contained in a $(d-1)$ dimensional affine flat. A symmetry of a d-polytope $P \subseteq \mathbb{R}^{d}$ is an isometry τ of \mathbb{R}^{d} that maps P onto P. In a suitable coordinate system, each symmetry can be represented by an orthogonal transformation. If P is an equipartite polytope, then the 1 -skeleton of P is an equipartite graph. Clearly, the converse is false. Two d-polytopes P and Q have the same symmetry type if they are combinatorially equivalent and their symmetry groups are isomorphic under an isomorphism compatible with their combinatorial equivalence [9].

A permutation group Γ acting on a set A_{0} of size $2 n$ has the interchange property [1] if for every n-element subset $A \subseteq A_{0}$, there is a group element $g \in \Gamma$ which interchanges A with its complement. Note that a polytope P is equipartite if and only if its symmetry group, acting as a permutation group on the vertices of P, has the interchange property.

We denote by Γ_{P} the group of symmetries of the polytope $P . \Gamma_{P}$ acts as a permutation group on the vertices and on the $\binom{2 n}{2}$ pairs of vertices of P.

Definition 2: For a given pair of vertices $\{u, v\} \subset V(P)$ the orbit of $\{u, v\}$ is is the graph $G_{u, v}$ where $V\left(G_{u, v}\right)=V(P)$ and $E\left(G_{u v}\right)=\left\{\gamma(u) \gamma(v) \mid \gamma \in \Gamma_{P}\right\}$.

Observation 1: When we consider the vertices of an equipartite polytope P as the vertices of a complete graph $K_{2 n}$ any orbit of Γ_{P} is an equipartite spanning subgraphs of $K_{2 n}$. Furthermore, on each orbit, Γ_{P} acts 2-homogeneously, that is, it acts transitively on the (unordered) pairs of vertices (u, v) that belong to the orbit. This also implies that all segments belonging to the same orbit have the same Euclidean length and the union of orbits is an equipartite graph.

3. Equipartite polytopes

We first note that equipartite polytopes have a very high degree of symmetry.
Definition 3: A polytope P is isogonal if for any two vertices of P, there is a symmetry of P that maps one onto the other.

Proposition 4: If a polytope P with $2 n$ vertices is equipartite, then P is isogonal.

Proof. This is a direct consequence of the interchange property [1]. For the reader's convenience we include the following simple proof.

Consider a graph G whose vertices are the vertices of P, two of them are adjacent if there is a symmetry of P that maps one of them onto the other. Clearly, the graph G is well-defined. If G contains a vertex v of degree at most $n-1$, choose a subset $A \subseteq V(G)$ such that $v \notin A$ and $|A|=n$. Note that v is adjacent to no vertex of A. Since the polytope P is equipartite, there is a symmetry that maps the vertices of A onto the complementary set of vertices of P. But this means that v must have a neighbor in A contradicting the definition of A. Hence, the minimum degree of G is at least n. Therefore, the graph G is connected (its order is $2 n$). Since a composition of two symmetries of P is a symmetry of P, it follows that G is the complete graph and the polytope P is isogonal.

We can now show that every equipartite d-polytope has at most $2(d+1)$ vertices. Since the only equipartite 2-polytopes can be cycles and no cycle of order >6 is an equipartite graph we can conclude:

Proposition 5: An equipartite 2-polytope P has at most six vertices.
Theorem 6: If P is an equipartite d-polytope with $2 n$ vertices, then $n \leq d+1$.
Proof. We may assume that $d \geq 3$. Let G_{i} be the graphs determined by the orbits that partition the complete graph on $V(P)$. The graphs G_{i} partition $K_{2 n}$ into edge-disjoint spanning subgraphs. As noted before, the graphs $\bigcup_{i \in I} G_{i}$ are equipartite for each set $I \subseteq\{1, \ldots, k\}$. In particular, each G_{i} is a nonempty equipartite graph of order $2 n$.

Assume that $n \geq d+2$. Since \mathbb{R}^{d} does not contain $d+2$ distinct equidistant points, no graph G_{i} contains a clique of order n. Note that the only nonempty equipartite graphs of order $2 n$ without a clique of order n are $n K_{2}$, $K_{n, n}$ and $K_{n, n} \backslash n K_{2}$. Hence, each G_{i} is isomorphic to $n K_{2}, K_{n, n}$ or $K_{n, n} \backslash n K_{2}$. Therefore, $k \geq 3$.

At most one of the graphs G_{i} can be isomorphic to $n K_{2}$. Indeed, if two of the graphs G_{j} and $G_{j^{\prime}}$ were isomorphic to $n K_{2}$, then the graph $G_{j} \cup G_{j^{\prime}}$ would be an equipartite 2-regular graph of order $2 n \geq 2(d+2) \geq 10$. But there is no such equipartite graph by Theorem 14 [5].

Since at most one of the graphs G_{i} is isomorphic to $n K_{2}$ and $k \geq 3$, two of the graphs G_{i}, say G_{1} and G_{2}, are isomorphic to $K_{n, n}$ or $K_{n, n} \backslash n K_{2}$. Both
G_{1} and G_{2} contain $K_{n, n} \backslash n K_{2}$ as a subgraph. Since the graphs G_{i} partition the complete graph $K_{2 n}$, the graph G_{2} is a subgraph of the complement of the graph G_{1}. This immediately yields that $K_{n, n} \backslash n K_{2}$ is a subgraph of its complement, i.e., $K_{n, n} \backslash n K_{2} \subseteq 2 K_{n}+n K_{2}$. However, this is not true for $n \geq 5$ - a contradiction.

4. Equipartite 2 and 3-polytopes

We first characterize equipartite 2-polytopes:
Theorem 7: Equipartite polygons are precisely isogonal quadrangles and hexagons, i.e., they are rectangles, regular hexagons and hexagons whose interior angles are all equal to 120° and whose sides alternate between two lengths.

Proof. It is easy to see that isogonal quadrangles and hexagons, i.e., squares, non-square rectangles, regular hexagons and non-regular isogonal hexagons, are equipartite. These are all isogonal polygons with at most six vertices. Since there is no equipartite polygon with eight or more vertices by Theorem 6 , the statement of the theorem now follows.

Equipartite 3-polytopes are more interesting. In order to describe all of them, we start by recalling that the symmetry types of all isogonal 3-polytopes have been determined [6]. It is well-known that each isogonal 3-polytope is combinatorially equivalent to one of the Platonic or Archimedean solids (we include prisms and anti-prisms among Archimedean solids). We can now show the following:

Theorem 8: Equipartite 3-polytopes are precisely tetrahedra, 3-sided prisms, 4 -sided prisms and 3 -sided antiprisms.

Proof. Each equipartite 3-polytope has at most 8 vertices by Theorem 6. It is easy to check that the only isogonal polytope on at most 8 vertices not listed in the statement of the theorem is a 4 -sided antiprism. However, no 4 -sided antiprism is equipartite (consider two successive vertices of one base and two non-adjacent vertices of the other).

An inspection of symmetry types of isogonal tetrahedra, 3-sided prisms, 4sided prisms and 3 -sided antiprisms leads to the following exhaustive list of
possible symmetry types of equipartite 3-polytopes (representatives of the symmetry types are depicted in Figure 3). The symmetry groups are denoted as in [2]:

Figure 3. Examples of equipartite 3-polytopes for each possible symmetry type (the notation used is as in [6])

- Tetrahedra

- The 2-parameter type SIG1 with the symmetry group [2, 2] ${ }^{+}$, i.e., a convex hull of congruent non-parallel segments, perpendicular to the line connecting their midpoints but not to each other.
- The 1-parameter type SIG3 with the symmetry group [2+,4], i.e., the limit case of the above in which the segments are perpendicular to each other, but the faces are not equilateral triangles, i.e., they are non-equilateral isosceles triangles.
- The regular tetrahedron SIG5 with the symmetry group [3, 3].
- 3-sided prisms
- The 1-parameter type SIG60(3) with the symmetry group [2, 3], i.e., a straight prism with an equilateral triangle as a base.

- 4-sided prisms

- The 2-parameter type SIG14 with the symmetry group [2, 2], i.e., a rectangular box with three distinct dimensions.
- The 1-parameter type SIG19 with the symmetry group [2, 4], i.e., a straight prism with a square as a base and with non-square mantle faces.
- The cube SIG19 with the symmetry group [3, 4].

- 3-sided antiprisms

- The 2-parameter type SIG30 with the symmetry group $[2,3]^{+}$, i.e.. a convex hull of two congruent equilateral triangles in horizontal planes, perpendicular to the line connecting their centers, with sides not parallel. The side faces are either congruent scalene triangles, or congruent non-horizontal isosceles triangles with nonhorizontal bases.
- The 1-parameter type SIG34 with the symmetry group $\left[2^{+}, 6\right]$, i.e., the limit case of the above in which the side faces are nonequilateral isosceles triangles with horizontal bases.
- The regular octahedron SIG37 with the symmetry group [3, 4].

5. Constructions of equipartite polytopes

Structure of equipartite polytopes is governed by equipartite graphs. Since the orbits of an equipartite polytope are equipartite graphs on which their automorphism group acts 2-homogeneously, there are very few possibilities. The
only possible orbits are:

$$
K_{2 n}, \quad K_{2 n} \backslash n K_{2}, \quad 2 K_{n}, \quad n K_{2}, \quad K_{n, n}, \quad K_{n, n} \backslash n K_{2}, \quad 2 C_{4}
$$

The other equipartite graphs are not edge transitive and therefore cannot be orbits. Since the orbits are edge disjoint spanning subgraphs of the complete graph on $V(P)$ and the union of orbits is an equipartite graph, it is easily seen that if P is an equipartite polytope in $\mathbb{R}^{d}, d \geq 4$ then if it does not contain $2 C_{4}$ as an orbit it must contain one of the following 3 orbits:

- $K_{2 n}$ (this is the regular simplex)
- $K_{2 n} \backslash n K_{2}$
- $2 K_{n}$

For instance, if P has an orbit isomorphic to $K_{n, n}$ then the only way the complete graph on $V(P)$ can be decomposed into the union of edge disjoint orbits is for it to contain $2 K_{n}$ as an orbit.

We start with the exceptional orbit $2 C_{4}$. We construct equipartite d-polytopes $(d=4,5)$ with 8 vertices having the orbit $2 C_{4}$. They are "unique" in the sense that their construction does not generalize to higher dimensions.

Take two congruent rectangles lying in a pair of orthogonal 2-dimensional subspaces of \mathbb{R}^{4}. For example: $\{(\pm a, \pm b, 0,0),(0,0, \pm a, \pm b)\}$

Note that for each two triples of vertices of a rectangle in \mathbb{R}^{2} there is an isometry of the rectangle that maps one triple onto the other triple. Also any two vertices of a rectangle can be isometrically mapped onto the other two vertices.

To show that this polytope is equipartite, note, for example, that the 4 vertices $\{(a, b, 0,0),(-a,-b, 0,0),(-a, b, 0,0),(0,0, a, b)\}$ will be interchanged with the vertices $\{(0,0,-a,-b),(0,0,-a, b),(0,0, a,-b),(a,-b, 0,0)\}$ by the orthogonal matrix

$$
M=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{1}\\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

All remaining cases can be treated similarly by similar combinations of 2×2 unit matrices and the 2×2 sub-matrices of M. Thus, the polytope obtained by the convex hull of these 8 points in \mathbb{R}^{4} is equipartite. In order to identify its
orbits we note that the matrices

$$
N=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2}\\
0 & 1 & 0 & 0 \\
0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & \pm 1
\end{array}\right)
$$

fix the vertices $(\pm a, \pm b, 0,0)$ and act transitively on the vertices $(0,0, \pm a, \pm b)$. This implies that the orthogonal matrices

$$
T=\left(\begin{array}{cccc}
\pm 1 & 0 & 0 & 0 \tag{3}\\
0 & \pm 1 & 0 & 0 \\
0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & \pm 1
\end{array}\right)
$$

generate the orbit $K_{4,4}$.
Hence the orbits of this polytope are: $\left\{4 K_{2}, 4 K_{2}, 4 K_{2}, K_{4,4}\right\}$. The equipartite graphs generated by unions of these orbits are:

- $2 C_{4}$: two matchings
- $2 K_{4}$: the 3 matchings
- $\overline{2 C_{4}}: K_{4,4}$ plus one matching
- $K_{8} \backslash 4 K_{2}$: two matchings and $K_{4,4}$
- K_{8} : the union of all orbits.

Thus, except for the graphs $K_{4,4} \backslash 4 K_{2}$ and its complement $2 K_{4}+4 K_{2}, 8$ of the 10 equipartite graphs of order 8 are orbits or unions of orbits in this 4-polytope. When $a=b=1$ we get a different 4-polytope of order 8 in which one of the orbits is $2 C_{4}$.

Similarly, the convex-hull of the 8 points $\{(\pm 1, \pm 1,1,0,0),(0,0,-1, \pm 1, \pm 1)\} \in$ \mathbb{R}^{5} also yield an equipartite 5 -polytope having $2 C_{4}$ as an orbit.

In the next two propositions we construct the only possible equipartite polytope having $K_{2 n} \backslash n K_{2}$ as an orbit.

Proposition 9: The cross-polytope $P=\operatorname{conv}\left(\pm e_{1}, \ldots, \pm e_{d}\right)$ where e_{i} are the unit vectors in \mathbb{R}^{d} is an equipartite polytope.

Proof. Let $F=\left\{f_{1}, \ldots, f_{d}\right\}$ be any subset of d points from $\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}$ and let G be its complement. We shall construct an orthogonal matrix P that maps F onto G. Let:

$$
\text { - } F_{1}=\left\{i \mid e_{i} \in F,-e_{i} \notin F\right\}
$$

- $F_{2}=\left\{i \mid-e_{i} \in F, e_{i} \notin F\right\}$
- $F_{3}=\left\{i \mid e_{i} \in F,-e_{i} \in F\right\}$

Define G_{1}, G_{2}, G_{3} similarly. Clearly, $F_{1}=G_{2}, F_{2}=G_{1}, F_{3} \cap G_{3}=\emptyset$ and $\left|F_{3}\right|=\left|G_{3}\right|$. Let ψ be a bijection from the vectors whose indices are in $F_{3} \cup G_{3}$ onto itself such that $\psi\left(e_{i}\right)=-\psi\left(-e_{i}\right)$. Define the matrix P by:

$$
P_{i, j}= \begin{cases}-1 & \text { if } i=j, e_{i} \in F_{1} \cup F_{2} \\ 1 & \text { if } e_{i} \in F_{3}, e_{j}=\psi\left(e_{i}\right) \\ 1 & \text { if } e_{j} \in G_{3}, e_{j}=\psi\left(e_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Note that P is a signed-permutation matrix in which non-zero diagonal entries are -1 , and the non-zero off-diagonal entries are 1. The diagonal entries interchange the vectors with indices $\in F_{1}$ with the vectors with indices $\in G_{2}$ and the vectors with indices $\in F_{2}$ with the vectors with indices $\in G_{1}$ while the off diagonal entries interchange the vectors whose indices $\in F_{3}$ and the vectors with indices $\in G_{3}$. Since P is an orthogonal matrix the cross-polytope is equipartite.

Proposition 10: If one of the orbits of an equipartite polytope P is isomorphic to $K_{2 n}-n K_{2}$, then P is the cross-polytope.

Proof. By the assumption, P is a polytope with $2 n$ vertices $v_{1}, \ldots, v_{2 n} \in \mathbb{R}^{d}$ (for some d). Since P is equipartite, for every subset of n vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ there is an isometry of P that interchanges $\left\{v_{1}, \ldots, v_{n}\right\}$ with $\left\{v_{n+1}, \ldots, v_{2 n}\right\}$. This implies that each such isometry fixes the point: $\sum_{i=1}^{2 n} v_{i}$. Furthermore, since P is isogonal, the Euclidean distance of every vertex of P from $\sum_{i=1}^{2 n} v_{i}$ is the same. Thus without loss of generality we may assume that $\sum_{i=1}^{2 n} v_{i}=0$ and $\left\|v_{i}\right\|=1$.

Let M be the $2 n \times 2 n$ matrix defined by:

$$
m_{i j}=\left\langle v_{i}, v_{j}\right\rangle
$$

Observe that $m_{i j}=m_{i^{\prime} j^{\prime}}$ whenever the pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ belong to the same orbit.

Since one orbit of P, say Ω_{1}, is isomorphic to $K_{2 n}-n K_{2}$, there must be exactly two orbits and the other orbit Ω_{2} is isomorphic to $n K_{2}$. It follows that
there are only three choices for $m_{i j}$:

$$
m_{i j}= \begin{cases}1 & \text { if } i=j \\ \alpha & \text { if } i \neq j \text { and } i j \in \Omega_{1} \\ \beta & \text { if } i \neq j \text { and } i j \in \Omega_{2}\end{cases}
$$

where $\alpha, \beta \in \mathbb{R}$. It is easy to see that up to a rearrangement of rows and columns,
(4)

$$
M=\left(\begin{array}{ccccccc}
1 & \beta & & & & & \\
\beta & 1 & & & & \alpha & \\
& & 1 & \beta & & & \\
& & \beta & 1 & & & \\
& & & & \ddots & & \\
& \alpha & & & & 1 & \beta \\
& & & & & \beta & 1
\end{array}\right)
$$

Since $\sum_{i=1}^{2 n} v_{i}=0$, we have

$$
\sum_{i=1}^{2 n} m_{i j}=\sum_{i=1}^{2 n}\left\langle v_{i}, v_{j}\right\rangle=\left\langle\left(\sum_{i=1}^{2 n} v_{i}\right), v_{j}\right\rangle=0
$$

so $\operatorname{rank}(M) \leq 2 n-1$ and

$$
\begin{equation*}
(2 n-2) \alpha+\beta+1=0 \tag{5}
\end{equation*}
$$

So 0 is an eigenvalue corresponding to the eigenvector $\mathbf{1}^{T}=(1,1, \ldots, 1)$. Let $u \neq \mathbf{1}^{T}$ be an eigenvector of M with corresponding eigenvalue λ. Since u is orthogonal to $\mathbf{1}^{T}$, we have $J u=0$, where J is the all- 1 matrix. Consequently, λ is also an eigenvalue of

$$
M-\alpha J=\left(\begin{array}{cccccc}
1-\alpha & \beta-\alpha & & & & \\
\beta-\alpha & 1-\alpha & & & & 0 \\
& & 1-\alpha & \beta-\alpha & & \\
& & \beta-\alpha & 1-\alpha & & \\
& & & & \ddots & \\
& 0 & & & & \begin{array}{l}
1-\alpha \\
\\
\\
\end{array} \\
& & & & \beta-\alpha & 1-\alpha
\end{array}\right)
$$

with equal multiplicity.

However, the eigenvalues of $M-\alpha J$ are easily identified as $\lambda_{2}=1-\beta$ and $\lambda_{3}=1+\beta-2 \alpha$, both of multiplicity n. Hence the sum of the multiplicities of the eigenvalues $0, \lambda_{2}$ and λ_{3} of M would exceed $2 n$, unless two of them coincide.

If $\lambda_{2}=0$, we get $\beta=1$ and consequently $\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{3}, v_{4}\right\rangle=\cdots=$ $\left\langle v_{2 n-1}, v_{2 n}\right\rangle=1$. But v_{i} are unit vectors which would imply $v_{1}=v_{2}, v_{3}=$ $v_{4}, \ldots, v_{2 n-1}=v_{2 n}$ a contradiction as the vertices of P are assumed distinct. If $\lambda_{2}=\lambda_{3}$, we obtain $\alpha=\beta$ and P is a regular simplex whose sole orbit is $K_{2 n}$.

The remaining case is $\lambda_{3}=0$. Together with (5), this implies that $\alpha=0$ and $\beta=-1$. The vertex set of P thus consists of n antipodal pairs of points, and distinct pairs determine orthogonal lines. We conclude that P is the equipartite cross-polytope.

The remaining equipartite polytopes have the orbit $2 K_{n}$.
Lemma 12 provides a simple tool to prove equipartiteness. It generalizes the proof above. It is based on the following well-known basic property of orthogonal real matrices:

Lemma 11: If $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are two sets of unit vectors in R^{d} such that $\left\langle u_{i}, u_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle \forall\{i, j\}$, then there is an orthogonal matrix T such that $T\left(u_{i}\right)=v_{i}$.

Lemma 12: Let $U=\left\{u_{1}, \ldots, u_{k}\right\}$ and $V=\left\{v_{1}, \ldots, v_{k}\right\}$ be two disjoint sets of unit vectors in \mathbb{R}^{d}. Suppose that $\left\langle u_{i}, u_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle=\alpha$ for all $1 \leq i<j \leq k$, $\left\langle u_{i}, v_{j}\right\rangle=\left\langle u_{j}, v_{i}\right\rangle=\beta$ for all $1 \leq i<j \leq k$ and $\left\langle u_{i}, v_{i}\right\rangle=\gamma$ for all $1 \leq i \leq k$. Then $P=\operatorname{conv}(U \cup V)$ is an equipartite polytope.

Proof. We first note that $k \leq d+1$ and that there is essentially one configuration of $d+1$ equiangular unit vectors in R^{d}; the unit vectors connecting the center of the regular d-simplex to its vertices. The angle between any two of these vectors is arccos $-\frac{1}{d}$.

Let $A=\left\{a_{1}, \ldots a_{k}\right\} \subset\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$ be an arbitrary k-element subset of vectors and let $B=\left\{b_{1}, \ldots, b_{k}\right\}$ be the remaining k vectors. By Lemma 11 it is enough to show that the vectors in A and B can be sequenced so that $\left\langle a_{i}, a_{j}\right\rangle=\left\langle b_{i}, b_{j}\right\rangle \forall\{i, j\}$.

The proof follows the same approach used in the proof of Proposition 9. Let $A=\left\{a_{1}, \ldots a_{k}\right\}=\left\{u_{i_{1}}, \ldots, u_{i_{r}}\right\} \cup\left\{v_{j_{1}}, \ldots, v_{j_{s}}\right\} \cup\left\{u_{h_{1}}, v_{h_{1}} \ldots, u_{h_{t}}, v_{h_{t}}\right\}$. Where:
(1) $r+s+2 t=k$.
(2) The sets $\left\{i_{1}, \ldots, i_{r}\right\},\left\{j_{1}, \ldots j_{s}\right\},\left\{h_{1}, \ldots, h_{t}\right\}$ are pairwise disjoint.

We sequence: $A=\left\{u_{i_{1}}, \ldots, u_{i_{r}}, u_{h_{1}}, u_{h_{2}}, \ldots, u_{h_{t}}, v_{j_{1}}, \ldots, v_{j_{s}}, v_{h_{1}}, \ldots, v_{h_{t}}\right\}$.
In this sequence, the first $r+t$ vectors belong to U and the remaining $s+t$ vectors belong to V.

We define $B=\left\{v_{i_{1}}, \ldots, v_{i_{r}}\right\} \cup\left\{u_{j_{1}}, \ldots, u_{j_{s}}\right\} \cup\left\{u_{p_{1}}, v_{p_{1}} \ldots, u_{p_{t}}, v_{p_{t}}\right\}$ where $\left\{h_{1}, \ldots, h_{t}\right\} \cap\left\{p_{1}, \ldots, p_{t}\right\}=\emptyset$ (note also that $r+s+2 t=k$ implies that these two sets have the same size).
B contains $r+t$ vectors from V and $s+t$ vectors from U. If we sequence $B=\left\{b_{1}, \ldots b_{k}\right\}$ so that the first $r+t$ vectors are from V and the last $s+t$ vectors from U the assumptions of the lemma imply that $\left\langle a_{i}, a_{j}\right\rangle=\left\langle b_{i}, b_{j}\right\rangle$.

We now present three constructions of equipartite polytopes with $2 K_{n}$ orbits.
Theorem 13: For every $d \geq 2$, there is an equipartite d-polytope with $2 d+2$ vertices.

Proof. Let u_{1}, \ldots, u_{d+1} be a set of $d+1$ equiangular unit vectors in \mathbb{R}^{d}. Note that the convex hull of the end-points of the vectors u_{1}, \ldots, u_{d+1} is a regular d-simplex. Set $v_{i}=-u_{i}$ for each $i=1, \ldots, d+1$ and let P be the convex hull of the end-points of the $2 d+2$ vectors $u_{1}, \ldots, u_{d+1}, v_{1}, \ldots, v_{d+1}$. P is a centrally symmetric convex d-polytope with $2 d+2$ vertices. By Lemma 12 , the polytope P is equipartite.

Remark: The orbits of this polytope are $2 K_{n}, n K_{2}$ and $K_{n, n} \backslash n K_{2}$. In \mathbb{R}^{3} this polytope is the regular 3-cube.

Theorem 14: The prism and anti-prism over a regular $(d-1)$-simplex is an equipartite d-polytope with $2 d$ vertices for every $d \geq 3$.

Proof. Let w_{1}, \ldots, w_{d} be a set of d equiangular unit vectors contained in a $(d-1)$-dimensional subspace of \mathbb{R}^{d}. For $0<\alpha<1$, define a d-polytope P_{α} to be the convex hull of the end-points of the $2 d$ vectors

$$
\begin{aligned}
U & =\left\{\alpha w_{1}+\sqrt{1-\alpha^{2}} e, \ldots, \alpha w_{d}+\sqrt{1-\alpha^{2}} e\right\} \\
V & =\left\{\alpha w_{1}-\sqrt{1-\alpha^{2}} e, \ldots, \alpha w_{d}-\sqrt{1-\alpha^{2}} e\right\}
\end{aligned}
$$

where e is the unit vector orthogonal to the subspace of \mathbb{R}^{d} spanned by the vectors $w_{1}, \ldots, w_{d} . P_{\alpha}$ is equipartite by Lemma 12 .

Similarly, the convex hull of $U^{\prime} \cup V^{\prime}$ where

$$
\begin{aligned}
& U^{\prime}=\left\{\alpha w_{1}+\sqrt{1-\alpha^{2}} e, \ldots, \alpha w_{d}+\sqrt{1-\alpha^{2}} e\right\} \\
& V^{\prime}=\left\{-\alpha w_{1}-\sqrt{1-\alpha^{2}} e, \ldots,-\alpha w_{d}-\sqrt{1-\alpha^{2}} e\right\}
\end{aligned}
$$

is an equipartite polytope and the theorem now readily follows.

The orbits of these polytopes are $2 K_{d}, d K_{2}$ and $K_{d, d} \backslash d K_{2}$.
ThEOREM 15: The convex hull of two regular isomorphic d-simplices centered at the origin which lie in orthogonal d-dimensional subspaces of $R^{2 d}$ form an equipartite ($2 d$)-polytope with $2 d+2$ vertices.

Proof. Let u_{1}, \ldots, u_{d} and v_{1}, \ldots, v_{d} be vectors from the origin to the vertices of each of the two regular d-simplices. We can assume without loss of generality that all the vectors u_{1}, \ldots, u_{d} and v_{1}, \ldots, v_{d} are unit vectors. If $i \neq j\left\langle u_{i}, u_{j}\right\rangle=$ $\left\langle v_{i}, v_{j}\right\rangle=\arccos \frac{-1}{d}$ and $\left\langle u_{i}, v_{j}\right\rangle=0$ by Lemma 12 the polytope described in the statement of the theorem is equipartite.

This equipartite $2 d$-polytope has $2 d+2$ vertices and two orbits: $2 K_{d+1}$ and $K_{d+1, d+1}$.

We now focus on the number of distinct symmetry types of equipartite $(2 d+1)$-simplices:

Theorem 16: For each $d \geq 2$, there are three distinct symmetry types of equipartite $(2 d+1)$-simplices.

Proof. The regular $(2 d+1)$-simplex is clearly equipartite. Another $(2 d+1)$ simplex, of a different symmetry type, can be obtained as follows:

Let $\left\{X_{1}, \ldots, X_{d+1}\right\}$ and $\left\{Y_{1}, \ldots, Y_{d+1}\right\}$ be the vertices of two regular d simplices centered at the origin. Let $A_{i}=\left(X_{i, 1}, \ldots, X_{i, d},-1,0, \ldots, 0\right) \in \mathbb{R}^{2 d+1}$ and $B_{i}=\left(0, \ldots, 0,+1, Y_{i, 1}, \ldots, Y_{i, d}\right) \in \mathbb{R}^{2 d+1}$ for $1 \leq i \leq d+1$. Let a_{i} and b_{i} be vectors from the origin to the point A_{i} and B_{i}, respectively. In order to show that the convex hull C of the points $A_{1}, \ldots, A_{d+1}, B_{1}, \ldots, B_{d+1}$ is a
$(2 d+1)$-simplex, we verify that they are affinely independent. Indeed:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccccccc}
1 & x_{1,1} & \cdots & x_{1, d} & -1 & 0 & \cdots & 0 \\
1 & x_{2,1} & \cdots & x_{2, d} & -1 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & x_{d+1,1} & \cdots & x_{d+1, d} & -1 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 & 1 & y_{1,1} & \cdots & y_{1, d} \\
1 & 0 & \cdots & 0 & 1 & y_{2,1} & \cdots & y_{2, d} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & 0 & \cdots & 0 & 1 & y_{d+1,1} & \cdots & y_{d+1, d}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccccccc}
1 & x_{1,1} & \cdots & x_{1, d} & 0 & 0 & \cdots & 0 \\
1 & x_{2,1} & \cdots & x_{2, d} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & x_{d+1,1} & \cdots & x_{d+1, d} & 0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 & 2 & y_{1,1} & \cdots & y_{1, d} \\
1 & 0 & \cdots & 0 & 2 & y_{2,1} & \cdots & y_{2, d} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & 0 & \cdots & 0 & 2 & y_{d+1,1} & \cdots & y_{d+1, d}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1,1} & \cdots & x_{1, d} \\
1 & x_{2,1} & \cdots & x_{2, d} \\
\vdots & \vdots & & \vdots \\
1 & x_{d+1,1} & \cdots & x_{d+1, d}
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{cccc}
2 & y_{1,1} & \cdots & y_{1, d} \\
2 & y_{2,1} & \cdots & y_{2, d} \\
\vdots & \vdots & & \vdots \\
2 & y_{d+1,1} & \cdots & y_{d+1, d}
\end{array}\right) \neq 0
\end{aligned}
$$

Observe now that the vectors a_{1}, \ldots, a_{d+1} and b_{1}, \ldots, b_{d+1} satisfy the assumptions of Lemma 12. Hence, C is an equipartite $(2 d+1)$-simplex. Note that the simplex C is not regular. The symmetry group of this simplex acts imprimitively with two classes of imprimitivity, namely A and B, and no other types of imprimitivity. In particular, for $d \geq 3$, there are no imprimitivity classes of size 2. The symmetry group of this simplex is the wreath product of the groups S_{d+1} and S_{2}.

Finally, there is a third symmetry type of equipartite $(2 d+1)$-simplices. Let a_{1}, \ldots, a_{d+1} be $d+1$ equiangular unit vectors in \mathbb{R}^{d} and let e_{1}, \ldots, e_{d+1} be $d+1$ vectors of an orthonormal basis of \mathbb{R}^{d+1}. Note that the end-points of the vectors a_{1}, \ldots, a_{d+1} form a regular d-simplex. We now define vectors $b_{1}, \ldots, b_{2 d+2}$.

The vector $b_{2 i-1}$ is equal to $\left(a_{i} \mid e_{i}\right)$ and $b_{2 i}$ to $\left(a_{i} \mid-e_{i}\right)$ where $(a \mid e)$ is a $(2 d+1)$-dimensional vector obtained by concatenation of the vectors a and e. It is easy to see that the vectors $b_{1}, \ldots, b_{2 d+2}$ are affinely independent vectors and hence the convex hull P of their end-points is a $(2 d+1)$-simplex.

We first note that $\left\langle b_{2 i-1}, b_{2 i}\right\rangle=0$ for each $i=1, \ldots, d+1$ and $\left\langle b_{2 i-1}, b_{2 k}\right\rangle=$ $\left\langle b_{2 i}, b_{2 k}\right\rangle=\arccos \frac{-1}{d}$ when $i \neq k$. So if $U=\left\{b_{2}, b_{4}, \ldots, b_{2 d+2}\right\}$ and $V=$ $\left\{b_{1}, b_{3}, \ldots, b_{2 d+1}\right\}$ by Lemma 12 the $(2 d+1)$-simplex P is equipartite.

Note that the symmetry group of P is imprimitive with $d+1$ classes of imprimitivity, corresponding to the pairs of vertices $b_{2 i-1}$ and $b_{2 i}$ for $i=1, \ldots, d+1$. Therefore, the symmetry group of P is the wreath product of the groups S_{2} and S_{d+1}.

We believe that the constructions in Sections 4 and 5 cover all possible equipartite polytopes. It is interesting to note that in $\mathbb{R}^{3}, \mathbb{R}^{4}$ and \mathbb{R}^{5} there are equipartite polytopes whose construction is not extendable to higher dimensions as they contain the orbit $2 C_{4}$.

Acknowledgement

The authors would like to thank Micha A. Perles for his many contributions to this paper. Micha noticed that the orbits play a key role in determining all equipartite polytopes. He suggested Proposition 10 and made many other suggestions that greatly improved this paper. We also like to thank the referees for their comments and corrections.

References

[1] P. J. Cameron, P. M. Neumann and J. Saxl, An interchange property in finite permutation groups, The Bulletin of the London Mathematical Society 11 (1979), 161-169.
[2] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer-Verlag, Berlin-New York, 1980.
[3] H. M. Cundy and A. P. Rollett, Mathematical Models, 2nd edition, Clarendon Press, Oxford, 1961.
[4] B. Grünbaum, Convex Polytopes, Second Edition, Springer, Berlin, 2003.
[5] B. Grünbaum, T. Kaiser, D. Král' and M. Rosenfeld, Equipartite graphs, Israel Journal of Mathematics 168 (2008), 431-444.
[6] B. Grünbaum and G. C. Shephard, Spherical tilings with transitivity properties, in The Geometric Vein - The Coxeter Festschrift (C. Davis et al., eds.), Springer-Verlag, New York, 1981, pp. 65-98.
[7] N. Jacobson, Basic algebra I, 2nd edition, W. H. Freeman, New York, 1985.
[8] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, Vol. 23, Springer-Verlag, Berlin, 2002.
[9] S. A. Robertson, Polytopes and Symmetry, Journal of the London Mathematical Society Lecture Note Series \#90, Cambridge University Press, Cambridge, 1984.
[10] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[^0]: * Support from the grant Kontakt ME 885 of the Czech Ministry of Education is gratefully acknowledged.
 ** Supported by Research Plan MSM 4977751301 of the Czech Ministry of Education.
 \dagger The institute is supported by Ministry of Education of Czech Republic as project 1M0545.
 $\dagger \dagger$ The author would like to acknowledge support by the Fulbright Senior Specialist Program.

