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ABSTRACT

A polytope P with 2n vertices is called equipartite if for any partition of

its vertex set into two equal-size sets V1 and V2, there is an isometry of the

polytope P that maps V1 onto V2. We prove that an equipartite polytope

in Rd can have at most 2d + 2 vertices. We show that this bound is sharp

and identify all known equipartite polytopes in Rd. We conjecture that

the list is complete.

1. Introduction

Classification of polytopes possessing a variety of symmetries has been exten-
sively studied: centrally symmetric polytopes, vertex transitive polytopes, self-
dual polytopes are few such examples. In this paper, we study a new kind of
symmetry: equipartiteness. Its definition is included in the abstract. Exam-
ples of equipartite d-polytopes include rectangles, squares and hexagons (two
types) in R2, various tetrahedra, regular octahedra, regular three-sided prisms,
rectangular boxes, in R3, regular simplices in R2k+1 and more. A complete list
of all equipartite polytopes in R2 and R3 is described in Section 4.

In Section 3, we prove that the number of vertices of an equipartite d-polytope
is at most 2d + 2 and, later in Section 5, we show that the bound is tight by
constructing equipartite d-polytopes with 2d+2 vertices for every d ≥ 2. When
restricting the definition of equipartiteness of polytopes to their 1-skeletons, we
are naturally led to the notion of equipartite graphs:

Definition 1: A graph G of order 2n is equipartite if for every n-element subset
A of its vertices, there is an automorphism of G mapping A to its complementary
set of vertices.

All equipartite graphs of order six and eight are depicted in Figures 1 and 2.

A full characterization of equipartite graphs was obtained in [5]. For every
n "= 4 there are 8 equipartite graphs of order 2n : K2n, 2Kn, 2Kn + nK2,
K2n \ nK2 and their complements. There are 10 equipartite graphs of order 8.
These graphs play a pivotal role in limiting the number of vertices in equipartite
d-polytopes and their structures. Curiously, all equipartite graphs appear as
orbits in equipartite polytopes.



Vol. 179, 2010 EQUIPARTITE POLYTOPES 237

6K1 3K2 K3,3 \ 3K2 2K3

K6 K6 \ 3K2 2K3 + 3K2 K3,3

Figure 1. Equipartite graphs of order six.

8K1 4K2 2C4 K4,4 \ 4K2 2K4

K8 K8 \ 4K2 2C4 2K4 + 4K2 K4,4

Figure 2. Equipartite graphs of order eight.

2. Definitions and notation

We use standard graph theory terminology which can be found, e.g., in [10].
A union of k vertex-disjoint copies of a graph G is denoted by k G. We write
G+H for an edge-disjoint union of two graphs G and H on the same vertex set;
the graph G+H will always be well-defined by the graphs G and H . Similarly,
G \H stands for a graph obtained from G by removing a subgraph isomorphic
to H . Again, the graph G \H will always be well-defined by the graphs G and
H . This notation is used in Figures 1 and 2.
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The d-dimensional Euclidean space is denoted by Rd. A d-polytope is a
convex hull of some n ≥ d+1 points of Rd which are not contained in a (d−1)-
dimensional affine flat. A symmetry of a d-polytope P ⊆ Rd is an isometry
τ of Rd that maps P onto P . In a suitable coordinate system, each symmetry
can be represented by an orthogonal transformation. If P is an equipartite
polytope, then the 1-skeleton of P is an equipartite graph. Clearly, the converse
is false. Two d-polytopes P and Q have the same symmetry type if they are
combinatorially equivalent and their symmetry groups are isomorphic under an
isomorphism compatible with their combinatorial equivalence [9].

A permutation group Γ acting on a set A0 of size 2n has the interchange
property [1] if for every n-element subset A ⊆ A0, there is a group element
g ∈ Γ which interchanges A with its complement. Note that a polytope P is
equipartite if and only if its symmetry group, acting as a permutation group on
the vertices of P , has the interchange property.

We denote by ΓP the group of symmetries of the polytope P . ΓP acts as a
permutation group on the vertices and on the

(2n
2

)
pairs of vertices of P .

Definition 2: For a given pair of vertices {u, v} ⊂ V (P ) the orbit of {u, v} is is
the graph Gu,v where V (Gu,v) = V (P ) and E(Guv) = {γ(u)γ(v)| γ ∈ ΓP }.

Observation 1: When we consider the vertices of an equipartite polytope P as
the vertices of a complete graph K2n any orbit of ΓP is an equipartite spanning
subgraphs of K2n. Furthermore, on each orbit, ΓP acts 2-homogeneously, that
is, it acts transitively on the (unordered) pairs of vertices (u, v) that belong to
the orbit. This also implies that all segments belonging to the same orbit have
the same Euclidean length and the union of orbits is an equipartite graph.

3. Equipartite polytopes

We first note that equipartite polytopes have a very high degree of symmetry.

Definition 3: A polytope P is isogonal if for any two vertices of P , there is a
symmetry of P that maps one onto the other.

Proposition 4: If a polytope P with 2n vertices is equipartite, then P is

isogonal.
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Proof. This is a direct consequence of the interchange property [1]. For the
reader’s convenience we include the following simple proof.

Consider a graph G whose vertices are the vertices of P , two of them are
adjacent if there is a symmetry of P that maps one of them onto the other.
Clearly, the graph G is well-defined. If G contains a vertex v of degree at most
n − 1, choose a subset A ⊆ V (G) such that v "∈ A and |A| = n. Note that v

is adjacent to no vertex of A. Since the polytope P is equipartite, there is a
symmetry that maps the vertices of A onto the complementary set of vertices of
P . But this means that v must have a neighbor in A contradicting the definition
of A. Hence, the minimum degree of G is at least n. Therefore, the graph G

is connected (its order is 2n). Since a composition of two symmetries of P is a
symmetry of P , it follows that G is the complete graph and the polytope P is
isogonal.

We can now show that every equipartite d-polytope has at most 2(d + 1)
vertices. Since the only equipartite 2-polytopes can be cycles and no cycle of
order > 6 is an equipartite graph we can conclude:

Proposition 5: An equipartite 2-polytope P has at most six vertices.

Theorem 6: If P is an equipartite d-polytope with 2n vertices, then n ≤ d+1.

Proof. We may assume that d ≥ 3. Let Gi be the graphs determined by the
orbits that partition the complete graph on V (P ). The graphs Gi partition K2n

into edge-disjoint spanning subgraphs. As noted before, the graphs
⋃

i∈I Gi are
equipartite for each set I ⊆ {1, . . . , k}. In particular, each Gi is a nonempty
equipartite graph of order 2n.

Assume that n ≥ d + 2. Since Rd does not contain d + 2 distinct equi-
distant points, no graph Gi contains a clique of order n. Note that the only
nonempty equipartite graphs of order 2n without a clique of order n are nK2,
Kn,n and Kn,n\nK2. Hence, each Gi is isomorphic to nK2, Kn,n or Kn,n\nK2.
Therefore, k ≥ 3.

At most one of the graphs Gi can be isomorphic to nK2. Indeed, if two of
the graphs Gj and Gj′ were isomorphic to nK2, then the graph Gj ∪Gj′ would
be an equipartite 2-regular graph of order 2n ≥ 2(d + 2) ≥ 10. But there is no
such equipartite graph by Theorem 14 [5].

Since at most one of the graphs Gi is isomorphic to nK2 and k ≥ 3, two of
the graphs Gi, say G1 and G2, are isomorphic to Kn,n or Kn,n \ nK2. Both
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G1 and G2 contain Kn,n \ nK2 as a subgraph. Since the graphs Gi partition
the complete graph K2n, the graph G2 is a subgraph of the complement of
the graph G1. This immediately yields that Kn,n \ nK2 is a subgraph of its
complement, i.e., Kn,n \nK2 ⊆ 2Kn +nK2. However, this is not true for n ≥ 5
– a contradiction.

4. Equipartite 2 and 3-polytopes

We first characterize equipartite 2-polytopes:

Theorem 7: Equipartite polygons are precisely isogonal quadrangles and hexa-

gons, i.e., they are rectangles, regular hexagons and hexagons whose interior

angles are all equal to 120◦ and whose sides alternate between two lengths.

Proof. It is easy to see that isogonal quadrangles and hexagons, i.e., squares,
non-square rectangles, regular hexagons and non-regular isogonal hexagons, are
equipartite. These are all isogonal polygons with at most six vertices. Since
there is no equipartite polygon with eight or more vertices by Theorem 6, the
statement of the theorem now follows.

Equipartite 3-polytopes are more interesting. In order to describe all of them,
we start by recalling that the symmetry types of all isogonal 3-polytopes have
been determined [6]. It is well-known that each isogonal 3-polytope is combi-
natorially equivalent to one of the Platonic or Archimedean solids (we include
prisms and anti-prisms among Archimedean solids). We can now show the
following:

Theorem 8: Equipartite 3-polytopes are precisely tetrahedra, 3-sided prisms,

4-sided prisms and 3-sided antiprisms.

Proof. Each equipartite 3-polytope has at most 8 vertices by Theorem 6. It is
easy to check that the only isogonal polytope on at most 8 vertices not listed
in the statement of the theorem is a 4-sided antiprism. However, no 4-sided
antiprism is equipartite (consider two successive vertices of one base and two
non-adjacent vertices of the other).

An inspection of symmetry types of isogonal tetrahedra, 3-sided prisms, 4-
sided prisms and 3-sided antiprisms leads to the following exhaustive list of
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possible symmetry types of equipartite 3-polytopes (representatives of the sym-
metry types are depicted in Figure 3). The symmetry groups are denoted as
in [2]:

SIG1 SIG3 SIG5

SIG60(3)

SIG30 SIG34 SIG37

SIG14 SIG19 SIG20

Figure 3. Examples of equipartite 3-polytopes for each possible
symmetry type (the notation used is as in [6])
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• Tetrahedra
– The 2-parameter type SIG1 with the symmetry group [2, 2]+, i.e.,

a convex hull of congruent non-parallel segments, perpendicular to
the line connecting their midpoints but not to each other.

– The 1-parameter type SIG3 with the symmetry group [2+, 4], i.e.,
the limit case of the above in which the segments are perpendicular
to each other, but the faces are not equilateral triangles, i.e., they
are non-equilateral isosceles triangles.

– The regular tetrahedron SIG5 with the symmetry group [3, 3].
• 3-sided prisms

– The 1-parameter type SIG60(3) with the symmetry group [2, 3],
i.e., a straight prism with an equilateral triangle as a base.

• 4-sided prisms
– The 2-parameter type SIG14 with the symmetry group [2, 2], i.e.,

a rectangular box with three distinct dimensions.
– The 1-parameter type SIG19 with the symmetry group [2, 4], i.e., a

straight prism with a square as a base and with non-square mantle
faces.

– The cube SIG19 with the symmetry group [3, 4].
• 3-sided antiprisms

– The 2-parameter type SIG30 with the symmetry group [2, 3]+, i.e..
a convex hull of two congruent equilateral triangles in horizontal
planes, perpendicular to the line connecting their centers, with
sides not parallel. The side faces are either congruent scalene tri-
angles, or congruent non-horizontal isosceles triangles with non-
horizontal bases.

– The 1-parameter type SIG34 with the symmetry group [2+, 6],
i.e., the limit case of the above in which the side faces are non-
equilateral isosceles triangles with horizontal bases.

– The regular octahedron SIG37 with the symmetry group [3, 4].

5. Constructions of equipartite polytopes

Structure of equipartite polytopes is governed by equipartite graphs. Since
the orbits of an equipartite polytope are equipartite graphs on which their
automorphism group acts 2-homogeneously, there are very few possibilities. The
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only possible orbits are:

K2n, K2n \ nK2, 2Kn, nK2, Kn,n, Kn,n \ nK2, 2C4

The other equipartite graphs are not edge transitive and therefore cannot be
orbits. Since the orbits are edge disjoint spanning subgraphs of the complete
graph on V (P ) and the union of orbits is an equipartite graph, it is easily seen
that if P is an equipartite polytope in Rd, d ≥ 4 then if it does not contain 2C4

as an orbit it must contain one of the following 3 orbits:

• K2n (this is the regular simplex)
• K2n \ nK2

• 2Kn

For instance, if P has an orbit isomorphic to Kn,n then the only way the com-
plete graph on V (P ) can be decomposed into the union of edge disjoint orbits
is for it to contain 2Kn as an orbit.

We start with the exceptional orbit 2C4. We construct equipartite d-polytopes
(d = 4, 5) with 8 vertices having the orbit 2C4. They are “unique” in the sense
that their construction does not generalize to higher dimensions.

Take two congruent rectangles lying in a pair of orthogonal 2-dimensional
subspaces of R4. For example: {(±a,±b, 0, 0), (0, 0,±a,±b)}

Note that for each two triples of vertices of a rectangle in R2 there is an
isometry of the rectangle that maps one triple onto the other triple. Also any
two vertices of a rectangle can be isometrically mapped onto the other two
vertices.

To show that this polytope is equipartite, note, for example, that the 4 ver-
tices {(a, b, 0, 0), (−a,−b, 0, 0), (−a, b, 0, 0), (0, 0, a, b)} will be interchanged with
the vertices {(0, 0,−a,−b), (0, 0,−a, b), (0, 0, a,−b), (a,−b, 0, 0)} by the orthog-
onal matrix

(1) M =





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0





All remaining cases can be treated similarly by similar combinations of 2 × 2
unit matrices and the 2 × 2 sub-matrices of M . Thus, the polytope obtained
by the convex hull of these 8 points in R4 is equipartite. In order to identify its
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orbits we note that the matrices

(2) N =





1 0 0 0
0 1 0 0
0 0 ±1 0
0 0 0 ±1





fix the vertices (±a,±b, 0, 0) and act transitively on the vertices (0, 0,±a,±b).
This implies that the orthogonal matrices

(3) T =





±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1





generate the orbit K4,4.
Hence the orbits of this polytope are: {4K2, 4K2, 4K2, K4,4}. The equipar-

tite graphs generated by unions of these orbits are:

• 2C4: two matchings
• 2K4: the 3 matchings
• 2C4: K4,4 plus one matching
• K8 \ 4K2: two matchings and K4,4

• K8: the union of all orbits.

Thus, except for the graphs K4,4 \4K2 and its complement 2K4 +4K2, 8 of the
10 equipartite graphs of order 8 are orbits or unions of orbits in this 4-polytope.
When a = b = 1 we get a different 4-polytope of order 8 in which one of the
orbits is 2C4.

Similarly, the convex-hull of the 8 points {(±1,±1, 1, 0, 0), (0, 0,−1,±1,±1)}∈
R5 also yield an equipartite 5-polytope having 2C4 as an orbit.

In the next two propositions we construct the only possible equipartite poly-
tope having K2n \ nK2 as an orbit.

Proposition 9: The cross-polytope P = conv(±e1, . . . ,±ed) where ei are the

unit vectors in Rd is an equipartite polytope.

Proof. Let F = {f1, . . . , fd} be any subset of d points from {±e1, . . . ,±ed} and
let G be its complement. We shall construct an orthogonal matrix P that maps
F onto G. Let:

• F1 = {i | ei ∈ F, −ei "∈ F}
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• F2 = {i | − ei ∈ F, ei "∈ F}
• F3 = {i | ei ∈ F, −ei ∈ F}

Define G1, G2, G3 similarly. Clearly, F1 = G2, F2 = G1, F3 ∩ G3 = ∅ and
|F3| = |G3|. Let ψ be a bijection from the vectors whose indices are in F3 ∪G3

onto itself such that ψ(ei) = −ψ(−ei). Define the matrix P by:

Pi,j =






−1 if i = j, ei ∈ F1 ∪ F2,

1 if ei ∈ F3, ej = ψ(ei),

1 if ej ∈ G3, ej = ψ(ei),

0 otherwise.

Note that P is a signed-permutation matrix in which non-zero diagonal entries
are −1, and the non-zero off-diagonal entries are 1. The diagonal entries in-
terchange the vectors with indices ∈ F1 with the vectors with indices ∈ G2

and the vectors with indices ∈ F2 with the vectors with indices ∈ G1 while the
off diagonal entries interchange the vectors whose indices ∈ F3 and the vec-
tors with indices ∈ G3. Since P is an orthogonal matrix the cross-polytope is
equipartite.

Proposition 10: If one of the orbits of an equipartite polytope P is isomorphic

to K2n − nK2, then P is the cross-polytope.

Proof. By the assumption, P is a polytope with 2n vertices v1, . . . , v2n ∈ Rd

(for some d). Since P is equipartite, for every subset of n vertices {v1, . . . , vn}
there is an isometry of P that interchanges {v1, . . . , vn} with {vn+1, . . . , v2n}.
This implies that each such isometry fixes the point:

∑2n
i=1 vi. Furthermore,

since P is isogonal, the Euclidean distance of every vertex of P from
∑2n

i=1 vi

is the same. Thus without loss of generality we may assume that
∑2n

i=1 vi = 0
and ‖vi‖ = 1.

Let M be the 2n × 2n matrix defined by:

mij = 〈vi, vj〉 .

Observe that mij = mi′j′ whenever the pairs (i, j) and (i′, j′) belong to the
same orbit.

Since one orbit of P , say Ω1, is isomorphic to K2n − nK2, there must be
exactly two orbits and the other orbit Ω2 is isomorphic to nK2. It follows that
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there are only three choices for mij :

mij =






1 if i = j,

α if i "= j and ij ∈ Ω1,

β if i "= j and ij ∈ Ω2,

where α, β ∈ R. It is easy to see that up to a rearrangement of rows and
columns,

(4) M =





1 β

β 1 α

1 β

β 1
. . .

α 1 β

β 1





Since
∑2n

i=1 vi = 0, we have

2n∑

i=1

mij =
2n∑

i=1

〈vi, vj〉 =

〈( 2n∑

i=1

vi

)
, vj

〉
= 0

so rank(M) ≤ 2n − 1 and

(5) (2n − 2)α + β + 1 = 0.

So 0 is an eigenvalue corresponding to the eigenvector 1T = (1, 1, . . . , 1). Let
u "= 1T be an eigenvector of M with corresponding eigenvalue λ. Since u is
orthogonal to 1T , we have Ju = 0, where J is the all-1 matrix. Consequently,
λ is also an eigenvalue of

M − αJ =





1 − α β − α

β − α 1 − α 0
1 − α β − α

β − α 1 − α
. . .

0 1 − α β − α

β − α 1 − α





with equal multiplicity.
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However, the eigenvalues of M − αJ are easily identified as λ2 = 1 − β and
λ3 = 1 + β − 2α, both of multiplicity n. Hence the sum of the multiplicities of
the eigenvalues 0, λ2 and λ3 of M would exceed 2n, unless two of them coincide.

If λ2 = 0, we get β = 1 and consequently 〈v1, v2〉 = 〈v3, v4〉 = · · · =
〈v2n−1, v2n〉 = 1. But vi are unit vectors which would imply v1 = v2, v3 =
v4, . . . , v2n−1 = v2n a contradiction as the vertices of P are assumed distinct. If
λ2 = λ3, we obtain α = β and P is a regular simplex whose sole orbit is K2n.

The remaining case is λ3 = 0. Together with (5), this implies that α = 0 and
β = −1. The vertex set of P thus consists of n antipodal pairs of points, and
distinct pairs determine orthogonal lines. We conclude that P is the equipartite
cross-polytope.

The remaining equipartite polytopes have the orbit 2Kn.
Lemma 12 provides a simple tool to prove equipartiteness. It generalizes

the proof above. It is based on the following well-known basic property of
orthogonal real matrices:

Lemma 11: If {u1, . . . , uk} and {v1, . . . , vk} are two sets of unit vectors in Rd

such that 〈ui, uj〉 = 〈vi, vj〉 ∀{i, j}, then there is an orthogonal matrix T such

that T (ui) = vi.

Lemma 12: Let U = {u1, . . . , uk} and V = {v1, . . . , vk} be two disjoint sets of

unit vectors in Rd. Suppose that 〈ui, uj〉 = 〈vi, vj〉 = α for all 1 ≤ i < j ≤ k,

〈ui, vj〉 = 〈uj, vi〉 = β for all 1 ≤ i < j ≤ k and 〈ui, vi〉 = γ for all 1 ≤ i ≤ k.

Then P = conv(U ∪ V ) is an equipartite polytope.

Proof. We first note that k ≤ d+1 and that there is essentially one configuration
of d + 1 equiangular unit vectors in Rd; the unit vectors connecting the center
of the regular d-simplex to its vertices. The angle between any two of these
vectors is arccos− 1

d .
Let A = {a1, . . . ak} ⊂ {u1, . . . , uk, v1, . . . , vk} be an arbitrary k-element

subset of vectors and let B = {b1, . . . , bk} be the remaining k vectors. By
Lemma 11 it is enough to show that the vectors in A and B can be sequenced
so that 〈ai, aj〉 = 〈bi, bj〉 ∀{i, j}.

The proof follows the same approach used in the proof of Proposition 9.
Let A = {a1, . . . ak} = {ui1 , . . . , uir} ∪ {vj1 , . . . , vjs} ∪ {uh1 , vh1 . . . , uht , vht}.
Where:
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(1) r + s + 2t = k.
(2) The sets {i1, . . . , ir}, {j1, . . . js}, {h1, . . . , ht} are pairwise disjoint.

We sequence: A = {ui1 , . . . , uir , uh1 , uh2 , . . . , uht , vj1 , . . . , vjs , vh1 , . . . , vht}.
In this sequence, the first r + t vectors belong to U and the remaining s + t

vectors belong to V .
We define B = {vi1 , . . . , vir} ∪ {uj1 , . . . , ujs} ∪ {up1 , vp1 . . . , upt , vpt} where

{h1, . . . , ht} ∩{ p1, . . . , pt} = ∅ (note also that r + s + 2t = k implies that these
two sets have the same size).

B contains r + t vectors from V and s + t vectors from U . If we sequence
B = {b1, . . . bk} so that the first r+t vectors are from V and the last s+t vectors
from U the assumptions of the lemma imply that 〈ai, aj〉 = 〈bi, bj〉.

We now present three constructions of equipartite polytopes with 2Kn orbits.

Theorem 13: For every d ≥ 2, there is an equipartite d-polytope with 2d + 2
vertices.

Proof. Let u1, . . . , ud+1 be a set of d + 1 equiangular unit vectors in Rd. Note
that the convex hull of the end-points of the vectors u1, . . . , ud+1 is a regular
d-simplex. Set vi = −ui for each i = 1, . . . , d+1 and let P be the convex hull of
the end-points of the 2d + 2 vectors u1, . . . , ud+1, v1, . . . , vd+1. P is a centrally
symmetric convex d-polytope with 2d + 2 vertices. By Lemma 12, the polytope
P is equipartite.

Remark: The orbits of this polytope are 2Kn, nK2 and Kn,n \nK2. In R3 this
polytope is the regular 3-cube.

Theorem 14: The prism and anti-prism over a regular (d − 1)-simplex is an

equipartite d-polytope with 2d vertices for every d ≥ 3.

Proof. Let w1, . . . , wd be a set of d equiangular unit vectors contained in a
(d − 1)-dimensional subspace of Rd. For 0 < α < 1, define a d-polytope Pα to
be the convex hull of the end-points of the 2d vectors

U = {αw1 +
√

1 − α2 e, . . . , αwd +
√

1 − α2 e}

V = {αw1 −
√

1 − α2 e, . . . , αwd −
√

1 − α2 e}

where e is the unit vector orthogonal to the subspace of Rd spanned by the
vectors w1, . . . , wd. Pα is equipartite by Lemma 12.
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Similarly, the convex hull of U ′ ∪ V ′ where

U ′ = {αw1 +
√

1 − α2 e, . . . , αwd +
√

1 − α2 e}

V ′ = {−αw1 −
√

1 − α2 e, . . . ,−αwd −
√

1 − α2 e}

is an equipartite polytope and the theorem now readily follows.

The orbits of these polytopes are 2Kd, dK2 and Kd,d \ dK2.

Theorem 15: The convex hull of two regular isomorphic d-simplices centered

at the origin which lie in orthogonal d-dimensional subspaces of R2d form an

equipartite (2d)-polytope with 2d + 2 vertices.

Proof. Let u1, . . . , ud and v1, . . . , vd be vectors from the origin to the vertices of
each of the two regular d-simplices. We can assume without loss of generality
that all the vectors u1, . . . , ud and v1, . . . , vd are unit vectors. If i "= j 〈ui, uj〉 =
〈vi, vj〉 = arccos−1

d and 〈ui, vj〉 = 0 by Lemma 12 the polytope described in
the statement of the theorem is equipartite.

This equipartite 2d-polytope has 2d + 2 vertices and two orbits: 2Kd+1 and
Kd+1,d+1.

We now focus on the number of distinct symmetry types of equipartite
(2d + 1)-simplices:

Theorem 16: For each d ≥ 2, there are three distinct symmetry types of

equipartite (2d + 1)-simplices.

Proof. The regular (2d + 1)-simplex is clearly equipartite. Another (2d + 1)-
simplex, of a different symmetry type, can be obtained as follows:

Let {X1, . . . , Xd+1} and {Y1, . . . , Yd+1} be the vertices of two regular d-
simplices centered at the origin. Let Ai = (Xi,1, . . . , Xi,d,−1, 0, . . . , 0) ∈ R2d+1

and Bi = (0, . . . , 0, +1, Yi,1, . . . , Yi,d) ∈ R2d+1 for 1 ≤ i ≤ d + 1. Let ai and
bi be vectors from the origin to the point Ai and Bi, respectively. In order
to show that the convex hull C of the points A1, . . . , Ad+1, B1, . . . , Bd+1 is a
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(2d + 1)-simplex, we verify that they are affinely independent. Indeed:

det





1 x1,1 · · · x1,d −1 0 · · · 0
1 x2,1 · · · x2,d −1 0 · · · 0
...

...
...

...
...

...
1 xd+1,1 · · · xd+1,d −1 0 · · · 0
1 0 · · · 0 1 y1,1 · · · y1,d

1 0 · · · 0 1 y2,1 · · · y2,d

...
...

...
...

...
...

1 0 · · · 0 1 yd+1,1 · · · yd+1,d





= det





1 x1,1 · · · x1,d 0 0 · · · 0
1 x2,1 · · · x2,d 0 0 · · · 0
...

...
...

...
...

...
1 xd+1,1 · · · xd+1,d 0 0 · · · 0
1 0 · · · 0 2 y1,1 · · · y1,d

1 0 · · · 0 2 y2,1 · · · y2,d

...
...

...
...

...
...

1 0 · · · 0 2 yd+1,1 · · · yd+1,d





= det





1 x1,1 · · · x1,d

1 x2,1 · · · x2,d

...
...

...
1 xd+1,1 · · · xd+1,d




· det





2 y1,1 · · · y1,d

2 y2,1 · · · y2,d

...
...

...
2 yd+1,1 · · · yd+1,d




"= 0

Observe now that the vectors a1, . . . , ad+1 and b1, . . . , bd+1 satisfy the assump-
tions of Lemma 12. Hence, C is an equipartite (2d + 1)-simplex. Note that the
simplex C is not regular. The symmetry group of this simplex acts imprimi-
tively with two classes of imprimitivity, namely A and B, and no other types
of imprimitivity. In particular, for d ≥ 3, there are no imprimitivity classes of
size 2. The symmetry group of this simplex is the wreath product of the groups
Sd+1 and S2.

Finally, there is a third symmetry type of equipartite (2d + 1)-simplices. Let
a1, . . . , ad+1 be d+1 equiangular unit vectors in Rd and let e1, . . . , ed+1 be d+1
vectors of an orthonormal basis of Rd+1. Note that the end-points of the vectors
a1, . . . , ad+1 form a regular d-simplex. We now define vectors b1, . . . , b2d+2.
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The vector b2i−1 is equal to (ai|ei) and b2i to (ai| − ei) where (a|e) is a
(2d + 1)-dimensional vector obtained by concatenation of the vectors a and e.
It is easy to see that the vectors b1, . . . , b2d+2 are affinely independent vectors
and hence the convex hull P of their end-points is a (2d + 1)-simplex.

We first note that 〈b2i−1, b2i〉 = 0 for each i = 1, . . . , d + 1 and 〈b2i−1, b2k〉 =
〈b2i, b2k〉 = arccos−1

d when i "= k. So if U = {b2, b4, . . . , b2d+2} and V =
{b1, b3, . . . , b2d+1} by Lemma 12 the (2d + 1)-simplex P is equipartite.

Note that the symmetry group of P is imprimitive with d+1 classes of imprim-
itivity, corresponding to the pairs of vertices b2i−1 and b2i for i = 1, . . . , d + 1.
Therefore, the symmetry group of P is the wreath product of the groups S2

and Sd+1.

We believe that the constructions in Sections 4 and 5 cover all possible
equipartite polytopes. It is interesting to note that in R3, R4 and R5 there
are equipartite polytopes whose construction is not extendable to higher di-
mensions as they contain the orbit 2C4 .
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