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The sixty years old conjecture by G. A. Dirac [Di51] is so sim-
ple it can be explained to a grade-school child in five minutes –– 
but it has resisted efforts to solve it for sixty years. We shall get to 
it in a moment, after setting up the formal definitions required by 
mathematicians that could be dispensed with when speaking to the 
child. 

An aggregate of points A consists of a finite set P of n distinct 
points {pj | 1 ≤ j ≤ n} together with the family of all lines {Li | i ∈ 
I} that contain at least two points of P.  It is convenient to stipulate 
that not all points of P are collinear; otherwise lots of exceptions 
would arise. The dual concept is an aggregate of lines, that is, a fi-
nite family of lines together with all their points of intersection, as-
suming not all lines are concurrent; it is convenient to think of it in 
the projective plane, considered as the Euclidean plane augmented 
by the points and line "at infinity". 

The concept of aggregates (of points, or of lines) has been ex-
plicitly defined only recently, but has been the topic of investiga-
tions for more than a century. Many papers that concern aggregates 
have been labeled as dealing with arrangements, or configurations, 
or various other general-use words.  It is my hope that a precise 
terminology –– that distinguishes between these several kinds of 
objects –– will, in time, become more widely used. In what follows 
we shall use this terminology and other modern concepts, even 
though other expressions are used in the original literature. 

One of the early questions concerning aggregates of points was 
posed by Dirac [Di51]. In an aggregate A of n points {pj | 1 ≤ j ≤ 
n}, we associate with each pj the multiplicity tj of pj defined as the 
number of lines Li in A that contain pj.  The maximum of the val-
ues of tj is the multiplicity t(A) of the aggregate A.  Dirac's ques-
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tion is how small can t(A) be if A ranges over all aggregates of n 
points; we denote this minimum by t(n). The topic can easily be re-
formulated in terms of aggregates of lines. Then we are asking for 
the multiplicity of each line (the number of points of the aggregate 
on it, which is the same as the number of edges in the arrangement 
of lines generated by the lines of the aggregate in the projective 
plane). Dirac's problem is to minimize the maximal number of ver-
tices (or edges) on each line in aggregates of n lines. We shall use 
both versions interchangeably, while noting that aggregates of 
lines are visually and perceptually simpler to understand. 

In [Di51] Dirac proved that t(n) > √n, but commented that this 
seems to be far from best possible. (A more accessible proof of t(n) 
> √n is in the book [Kl 91] by Klee and Wagon.) Dirac continued 
with the conjecture (written here in the usual notation, with x de-
noting the "ceiling" of x) 

 ... it seems likely that ... t(n) ≥ n/2 ...  . I have checked the truth of 
  this for n ≤ 14.   ...    In the case of t(n) it is easy to see that this is  
 best possible, since t(n) = n/2 for the following configurations ...". 

Dirac supports this conjecture by general examples, which are 
illustrated in Figure 1. An alternative notation for Dirac's conjec-
ture is t(n) = [(n+1)/2]. 

Various examples (that we shall mention soon) show that 
Dirac's conjecture is not valid in general. This does not detract 
from Dirac's work – after all, conjectures are made to be either 
confirmed or refuted, and for all that is known, by changing the 
conjecture just a little eliminates all but few available counterex-
amples. However, a serious problem with Dirac's statement is the 
assertion I have checked the truth of this [conjecture] for n ≤ 14 
since there are at least four values of n ≤ 14 for which the conjec-
ture fails, and t(n) is smaller than this bound. Two examples are il-
lustrated in Figure 2, the two other examples are listed in the Ta-
ble. 

At about the same time as Dirac's paper, there appeared a paper 
by Motzkin [Mo51], often quoted for a variety of results it con-
tains. Motzkin mentions (on p. 452) that for each n-point aggregate 
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Figure 1. (a)  Duals (in the projective plane) of the typical ex-

amples constructed by Dirac [Di51] to show that t(n) = n/2. For 
even n = 2k, the example A consists of two pencils of  n/2 – 1  
concurrent lines, that intersect a different line in the same points 
(that is, the two pencils of lines are projectively equivalent) to-
gether with that line and the line connecting the two apexes of the 
pencils (here points at infinity, connected by the line at infinity). In 
the diagram n = 12, and as is easily verified t(A) in the illustration 
is 6, and in general t(A) = n/2.  For odd n = 2k – 1, the same lines 
as before are used except that the connecting line is not included; 
then t(A) = 6 = 11/2 again, and in general t(A) = n/2.  (b) A 
slight modification of Dirac's construction, showing greater sym-
metry and leading to the same results. 

A the existence of an ordinary line in A (that is, a line through 
precisely two points of A) would follow from t(A) ≥ n/2, but that 
this "has not been proved or disproved."  In any case, since t(A) is 
an integer, t(A) ≥ n/2 is the same as t(A) ≥ [(n+1)/2] = n/2, 
hence equivalent to Dirac's conjecture. However, it should be 
noted that although Motzkin explicitly avoids conjecturing what is 
the value of t(n), in some publications the conjecture t(A) ≥ n/2 for 
all A has been called the Dirac-Motzkin conjecture. 

The first new information regarding t(n) emerged in [Gr72], 
where several examples that contradict the "Dirac-Motzkin" con-
jecture were given. A longer list of counterexamples is contained 
in the Table at the end of this paper; it is mainly based on [Gr09]. 
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Figure 2. Two examples of aggregates with n ≤ 14, that contradict 
Dirac's claim that t(n) = n/2 for n ≤ 14.  The simplicial arrange-
ment denoted A(9,1) in [Gr09], shown in (a), has n = 9 but t = 4. 
The aggregate shown in (b) is the dual of the example with n = 11 
and t = 5 found by Akiyama et al. [Ak10]. 

Several books deal briefly with Dirac's conjecture. Klee and 
Wagon [Kl91] discuss the difficulties in establishing any related 
result, and suggest that one might try to prove t(n) ≥ n/3 –– which 
is not contradicted by any known examples. However, there does 
not seem to have been any action on this suggestion. 

Two other books deal with Dirac's problem, each on half a 
page. The main contribution of Felsner [Fe04, p. 86] is ... a family 
of [aggregates of] lines showing that t(n) ≤ n/2 – 2 for all n of 
the form n = 12k + 7 ... The construction is not made explicit, but 
is illustrated by the example for k = 2 (that is,  n = 31); the result-
ing aggregate A has t(A) =14. Figure 3 show a possible interpre-
tation of the Felsner construction for n = 19 (with t = 8), as well as 
an example with n = 31 that is slightly different from Felsner's. 

Brass, Moser and Pach [Br05, p. 313] ascribe to Dirac a con-
jecture which is their own extension of Dirac's: There is a constant 
c such that t(n) ≥ n/2 – c. They add the comment: Many small 
examples in [Gr72] show that the conjecture is false with c = 0. An 
infinite family of counterexamples was constructed by Felsner 
(personal communication): 6k + 7 points, each of them incident to 
at most 3k + 2 lines. This comment about Felsner is reproduced in 
[Ak10]. 
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(a) (b)  
Figure 3. (a) An aggregate of 19 lines, with t = 8; it arises as the 
simplicial arrangement A(19,1), in the notation of [Gr09].  (b) An 
aggregate of 31 lines, with t = 14; it arises from the simplicial ar-
rangement A(31,2), and is different from the examples with 31 
lines and t = 14 given in [Fe04] and[ Br05]. 

Without any additional explanation there follows in [Br05] a 
diagram that is a counterexample to Dirac's conjecture with c = 0. 
This aggregate A has n = 31 and t(A) = 14.  It is not clear from 
the text whether this example is due to Felsner, or to the authors.  
I have been able find a generalization of this example for all even k 
(so that the values of n coincide with those in Felsner's examples), 
but I have not been successful in modifying the given example for 
odd values of k to confirm the authors' claim. Brass and Pach (pri-
vate communications) indicated that the statement is in error for 
odd k, and that a corrected version will appear in the Japanese 
translation of [Br05]. 

In a recent paper [Ak10], J. Akiyama et al. mention examples 
that improve the previously known results; this will be made pre-
cise below. (I am indebted to the authors for a preprint of [Ak10].) 

It would seem that a slight modification of the conjectures in 
[Di51] and [Br05] accommodates more closely all known results, 
and exhibits a certain balance: 
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Conjecture. Except for finitely many values of n = 12k + m 
we have t(n) = [n/2] if m = 0,1,4,5,8,9, and t(n) = [n/2] – 1 if  
m = 2,3,6,7,10,11. 

Support for this conjecture in case m = 0,4,8 comes from the 
aggregates that correspond to the families of simplicial arrange-
ments R(1) in the notation of [Gr09] as well as the construction of 
Dirac (see Figure 1), and a variety of other examples. For 
m = 1,5,9 the values are those arising from simplicial arrangements 
R(2); an alterative construction is given in [Ak10], where also a 
special construction for n = 49 is given, see Figure 4. For m =  7 
the bound is obtained through the family of examples in [Fe05]. 
For m = 3 and 11, there are only a few examples known that con-
form to the conjecture; they are listed in the Table. In [Ak10] there 
is a family of examples for m = 3 that gives a value of t(n) higher 
by 1 than our conjecture. For m = 2,6,10 the values are implied by 
the monotonicity of t(n). 

 
Figure 4. The (dual of an) example in [Ak10] with n = 49 and 
t = 22. 
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Dirac's theorem t(n) > √n makes use of incidence properties 
only, so it is valid in appropriate combinatorial structures. It would 
be interesting to investigate the values of t*(n), defined in analogy 
to t(n) but for aggregates of pseudolines. 
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Table of values of t(n). (a) Parameter n. (b) Value of t(n) given by 
our Conjecture. (c) Smallest known value of t(n); italics indicate a 
value smaller than the one in (b), and bold-face marks entries 
higher than the conjecture. (d) Example for the value in (c); in 
many cases there are additional examples. Symbol A(n,j) refers to 
the simplicial arrangement in the notation of [Gr09]; A(n,j)\i re-
sults from A(n,j) by the deletion of (any) i lines. X(n) is an exam-
ple from [Ak10], and F[n] is an example from [Fe04]. 
 
(a) (b) (c) (d) (a) (b)  (c) (d)  

 
6 2 3 A(6,1) 31 14 12 A(31,1) 
7 2 4 A(7,1) 32 16 16 A(32,1) 
8 4 4 A(8,1) 33 16 16 A(33,1) 
9 4 4 A(9,1) 34 16 16 A(37,2)\3 
10 4 5 A(10,1) 35 16 16 A(37,2)\2 
11 4 5 X(11) 36 18 16 A(37,2)\1 
12 6 6 A(12,1) 37 18 16 A(37,2) 
13 6 6 A(13,1) 38 18 19 A(38,1) 
14 6 6 A(15,1)\1 39 18 19 X(39) 
15 6 6 A(15,1) 40 20 20 A(40,1) 
16 8 8 A(16,1) 41 20 20 A(41,1) 
17 8 8 A(17,1) 42 20 20 F(43)\1 
18 8 8 A(18,2) 43 20 20 F(43) 
19 8 8 A(19,1) 44 22 22 A(44,1) 
20 10 9 A(20,5) 45 22 22 A(45,1) 
21 10 10 A(21,1) 46 22 22 X(49)\3 
22 10 10 A(24,2)\2 47 22 22 X(49)\2 
23 10 10 A(24,2)\1 48 24 22 X(49)\1 
24 12 10 A(24,2) 49 24 22 X(49) 
25 12 10 A(25,5) 50 24 25 A(50,1) 
26 12 12 A(26,2) 51 24 25 X(51) 
27 12 12 A(27,1) 52 26 26 A(52,1) 
28 14 12 A(28,2) 53 26 26 A(53,1) 
29 14 12 A(29,2) 54 26 26 F(55)\1 
30 14 12 A(30,2) 55 26 26 F(55) 
 


