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A parallelohedron is any polyhedron P in 3-dimensional space 

with the property that there is a tiling of the space consisting of 
translated copies of P. This concept, as well as that of the more 
general zonohedra, are due to Fedorov [F]. He proved that any 
convex parallelohedron is combinatorially equivalent to one of the 
five polyhedra in Figure 1.  In the later years the theory of convex 
parallelohedra and zonohedra was extended to higher dimensions, 
see for example [Z].  However, no general studies of nonconvex 
parallelohedra have been published prior to [G].  But two particu-
lar types of such polyhedra (and their higher-dimensional ana-
logues) have been studied in some detail by Stein [S] and his col-
laborators. These they called crosses and semicrosses.  A "cross" is 
a set of congruent cubes consisting of a central cube and a stack of 
k ≥ 1 cubes attached (face-to-face) to each of its faces. A "semi-
cross" is formed in the same way, but with stacks attached on only 
one-half of the faces, all adjacent to each other. 

In this note we shall use a notation different from that of Stein 
but more suitable for our purposes. A (u,v,w)-semicross has stacks 
of u, v, or w, respectively, attached to three adjacent faces of a  

 
Figure 1.  Representatives of the five combinatorial types of 

convex parallelohedra, as determined by Fedorov [F]. (a) Trun-
cated octahedron (an Archimedean polyhedron); (b) Elongated do-
decahedron (with regular faces, but not Archimedean);  (c) Ke-
pler's rhombic dodecahedron K (a Catalan polyhedron); (d) Ar-
chimedean 6-sided prism; and (e) cube. 
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central cube; we shall always assume that u ≥ v ≥ w.  In Figure 2 
we show a (1,1,1)-semicross P and a (3,2,1) semicross.  In the writ-
ings by Stein and others about semicrosses, P is called a (1,3) 
semicross, where 1 is k in the earlier definition, and 3 denotes the 
dimension.  Our notation does not include the dimension since we 
are restricting the discussion to the 3-dimensional case; however, 
in contrast to the earlier works, we do not require the three stacks 
to have the same size. 

One of the results of Stein [S] is that the (k,k,k) semicross is a 
parallelohedron if and only if k = 1.  Our results imply that every 
(u,v,1) semicross is a parallelohedron. To formulate our results 
precisely, it is convenient to introduce some additional concepts. 

A tiling by a semicross is a lattice tiling provided any two tiles 
are related by a translation vector, where all such vectors form a 
lattice (that is, an additive group). It is called an integer tiling if 
any two tiles are related by translation vectors with integer compo-
nents. Integer lattice tilings are both lattice and integer tilings. 

Theorem 1.  Every (u,v,1) semicross admits an integer lattice 
tiling. 

Theorem 2.  The (1,1,1) semicross P admits two distinct inte-
ger lattice tilings, as well as a continuum of tilings that are 
 lattice tilings but are not integer tilings;  
 integer tilings but are not lattice tilings; 
 neither lattice tilings nor integer tilings. 

 
 

Figure 2. Examples of (1,1,1) and (3,2,1) semicrosses. 
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In the literature, questions about semicross tilings have been 
recast into algebraic garb, and treated accordingly. This may have 
been caused by the wish to obtain results in all dimensions, but 
possibly also by the difficulty to present the 3-dimensional tilings 
in an intelligible way. The semicrosses we are concerned allow a 
quite simple geometric approach, which we shall now explain and 
use in the proof of the theorems. 

We assume that the semicrosses are composed by unit cubes, 
centered at the origin of the x-y-z coordinate system. A schematic 
representation of such semicrosses is shown in Figure 3. In this 
representation, we are imagining that we are looking down on a 
semicross from far on the z-axis. The two horizontal "arms" of the 
semicross are indicated by shaded squares, the vertical arm by the 
black square. Since we are interested in (u,v,1) semicrosses only, 
the black square indicates a single cube above the cubes of the two 
other arms. Then a section of an integer tiling, parallel to the x-y 
plane, may appear like the example in Figure 4, where the white 
squares indicate cubes that are the vertical arms of the semicrosses 
in the layer below. 

The same Figure 4 may be interpreted as a visual proof of 
Theorem 1. Indeed, the set of white squares is translation equiva-
lent to the set of black squares, and this means that the layer un-
derneath the one shown arises from it by an integer translation. 
This translation can be repeated indefinitely downwards, and has 
an inverse that can be indefinitely extended upwards –– hence 
leads to an integer lattice tiling. An analogous argument proved 
Theorem 1 in general.  ♦ 

(1,1,1) (3,2,1)
 

Figure 3. The schematic representation of the semicrosses in 
Figure 2. 



 Page 103 

 
Figure 4. A schematic representation of an integer lattice tiling 

by (3,2,1) semicrosses, one of which is highlighted by distinct 
shading. 

 
For the proof of Theorem 2 we first note that the two tilings 

represented in Figure 5 are the two distinct tilings mentioned in 
Theorem 2.  The fact that they are different tilings can be seen in 
various ways; probably simplest is to observe that with respect to 
every coordinate plane the semicrosses in the "square tiling" have 
end-squares shared with central cubes, but this does not hold for 
the "diagonal tiling". We may mention that the tiling by (1,1,1) 
semicrosses shown in Figure 6 that appears to be different from the 
ones in Figure 5 is actually the same as the diagonal tiling. 

 
Figure 5.  A schematic representation of the two integer lattice 

tilings by the (1,1,1) semicrosses, mentioned in Theorem 2. The 
heavily drawn zigzags bound the vertical slabs used in the proof of 
the other parts of Theorem 2. 
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Figure 6.  A schematic representation of an integer lattice tiling 

by the (1,1,1) semicrosses, which is in fact the same as the diago-
nal tiling in Figure 5. 

 

One interesting property of both tilings in Figure 5 is that there 
are essentially 2-dimensional collections of tiles that can be con-
sidered as "supertiles" from which the tilings arise by translations. 
These supertiles are the ones indicated by the zigzags in Figure 5; 
two layers of the (1,1,1) semicrosses that make these supertiles by 
repetition in the vertical direction are shown in Figure 7.  The most 
remarkable property of these zigzag vertical walls is the fact that  

 
Figure 7.  Two layers of the "vertical wall" indicated by the 

zigzag lines in Figure 5. The two layers can be translationally re-
peated to create an infinite wall translated copies of which can be 
vertically displaced by any distance. 
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adjacent ones can slide up and down with respect to each other. In 
fact, the diagonal tiling can be obtained from the square tiling by 
sliding every other wall one unit up (or down).  But such slides 
through any collection of distances are also possible, and suitable 
choices yield all the various tilings specified in the second part of 
Theorem 2.  ♦ 

Comments. 

During recent investigations that led to the paper [G], I hap-
pened to notice the following sentence on page 532 of [S]:  

We should point out that there are tilings of R3 by (1,3) semi-
crosses which are not a lattice and that there is a tiling in 
which the centers form a lattice L, such that R3/L = Z2 x Z2. 

As I could not imagine such tilings, and could not find any de-
tails about them, my curiosity led me to experimental investiga-
tions using my grandsons set of "Duplo"s (a variety of Leggo's). 
Forming units that are a fair approximation of (1,1,1) semicrosses, 
it was easy to see that there are (at least two) integer lattice tilings. 
The most surprising discovery –– facilitated by the fact that Duplo 
blocks sitting above each other stick together –– was the existence 
of the zigzag walls.  The obvious freedom of motion provided by 
these supertiles then led to the other parts of Theorem 2, and to the 
relationship between the two integer lattice tilings. 

The following conjecture was made in [G]: 

Conjecture.  Let P be a sphere-like polyhedron, with no pairs 
of coplanar faces.  If the boundary of P can be partitioned into 
pairs of non-overlapping "patches" {S1, T1}; {S2, T2}; ... ; {Sr, Tr}, 
each patch a union of contiguous faces, such that the members in 
each pair {Si, Ti} are translates of each other, and the complex of 
"patches" is topologically equivalent as a cell complex to one of 
the parallelohedra in Figure 1, then P is a parallelohedron. Con-
versely, if no such partition is possible then P is not a parallelohe-
dron. 

Only a small effort is needed to verify that the semicrosses 
(u,v,1) do not admit any such partitions even though they are paral-
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lelohedra. The reason that this does not disprove the conjecture is 
that no interpretation of the condition in the conjecture is applica-
ble to semicrosses: If the squares are considered as faces –– there 
are coplanar ones; if coplanar triplets of squares are considered as 
face –– there are no translates. 

We may generalize crosses in a way similar to what we did for 
semicrosses. A (u,v,w) cross consists of a central cube on opposite 
sides of which are attached stacks of u, v, w cubes, respectively.  It 
is known that (k,k,k) crosses tile 3-dimensional space if an only if 
k = 1 or 2 (see, for example, [SS]).  By a slight modification of the 
approach used in the proof of Theorems 1 and 2, we can establish: 

Theorem 3.  The (k,1,1) cross admits integer lattice tilings for 
every  k ≥ 1, and so do the (2,2,1) and (3,2,1) crosses.  

As before, it is easy to provide graphic proofs. The difference 
is that now the white squares are of two kinds: solid dots indicate 
cubes that are bottom cubes of the crosses in the next higher layer, 
while hollow dots indicate top cubes of the next lower level. This 
is illustrated in Figure 8, by the (2,1,1) cross and the {3,2,1} cross. 
The other crosses mentioned in Theorem 3 admit analogous tilings. 

 
Figure 8. A visual proof of the possibility of tilings by the 

(2,1,1) and the (3,2,1) crosses. 
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It is interesting that there seems to be no mention of parallelo-
hedra in any of the writings on crosses and semicrosses.  

At present it is not known how to characterize the semicrosses 
and crosses (in the sense considered here) that are parallelohedra –
– with or without assumptions of lattice or integer restrictions. As 
is evident from the results of this note, there are possibilities that 
go beyond the traditionally considered crosses and semicrosses. 
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