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GEOMETRIC REALIZATIONS OF SPECIAL TOROIDAL
COMPLEXES

BRANKO GRÜNBAUM AND LAJOS SZILASSI

Abstract. For which positive integers n is it possible to find geometric
complexes that topologically are tori such that all n faces are k-gons,
where k = 3, or else 4, or 5, or 6? The answers we are able to provide
do not solve the problem completely, but leave certain undecided cases.
The main aim of the paper is to show how varied are the geometric
shapes that represent the various cases. As will be seen, several of the
polyhedra are quite hard to imagine or visualize, and we provide detailed
insights into their construction, including coordinates of their vertices
in some of the cases.
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1. Introduction

If nothing else is expressly stated, we shall assume that we are dealing with
polyhedral complexes, that is, families of planar polygons, not necessarily
convex; these are the faces of the complexes. The polygons are assumed
to be simple; that is, there are no collinear adjacent edges, all vertices are
distinct, and any two edges have in common at most an endpoint of both.
We also require that the faces incident with a common vertex form a circuit
in which adjacent faces share an edge that is incident with the vertex in
question; hence there are at least three faces incident with each vertex.
Adjacent faces cannot be coplanar. To simplify the language, we shall use
the term “polyhedra” for such complexes. Except in the last section, we
shall assume that the polyhedra are acoptic, that is, the intersection of any
two faces is either empty, or else every connected component is a vertex
or an edge of both. If such an intersection of two faces has more than
one component, we shall say that the faces are overarching. An example is
shown in Figure 1. Note that acoptic polyhedra with convex faces have no
overarching faces; it follows that triangulations have no overarching faces.
By the analogue of the Jordan curve theorem in the plane, each acoptic
polyhedron is the boundary of a solid.

The torus is an orientable manifold, its Euler characteristic is 0, that is
V − E + F = 0; here and throughout we shall use V , E, and F to denote

Received by the editors April 3, 2007, and in revised form February 4, 2009.
2000 Mathematics Subject Classification. (Missing.)
Key words and phrases. (Missing.)

c©2009 University of Calgary

21
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Figure 1: A “notched tetrahedron” has a pair of overarching faces.

the number of vertices, edges and faces of the polyhedron. The polyhedra
we are interested in are those tori in which all faces have the same number
k of sides. It is a simple consequence of the Euler characteristic of the
torus that k must be one of 3, 4, 5, 6. While the terms “triangulation” and
“quadrangulation” are commonly used for the first two of these cases, for
the other two we shall use “quintangulation” and “hexangulation”; these
terms are possibly not without reproach, but will do for present purposes.
To stress the distinction between the polyhedra considered here and more
general constructs, we shall use the term “geometric.” Unless the contrary
is explicitly stated, by “polyhedron” we mean “torus.”

2. Triangulations

As each edge belongs to two faces, the number F of faces must be even. It
is well known that combinatorial (or topological) triangulations of the torus
exist for all F = 2n, with n ≥ 1.

Proposition 2.1. For every even F ≥ 14 there are geometric triangulations
of the torus with F faces.

Proof. For F = 14 there are the well-known Császár tori, see [5, 8, 20,
21]. Attaching a tetrahedron along a face of a given toroidal polyhedron
eliminates one face from each, hence leads to a net increase of two faces; the
existence for every even F ≥ 16 follows. It is a consequence of the Euler
relation that no triangulated acoptic tori exist with F ≤ 12. �

Remark 2.2: For every F = 4m, m ≥ 5, there exist geometric triangulations
that are isogonal (that is, vertex-transitive); see [12].

Conjecture 2.3. There are no geometric isogonal triangulations of the
torus with F = 2m, where m is odd.

3. Quadrangulations

We first note:
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Proposition 3.1. There exist geometric non-overarching quadrangulations
of the torus with F convex faces for every F ≥ 9 except possibly for F =
10, 11.

Proof. There are two basic constructions we use. First, there are gener-
alized “picture frames.” For all integers p ≥ 3 and q ≥ 3 we can con-
struct “picture frames” for p-sided “pictures,” with q-sided cross-sections.
These give quadrangulations with F = pq, thus yielding the values F =
9, 12, 15, 16, 18, 20, . . . . �

Examples of two “picture frame” polyhedra with F = 15 are shown in
Figure 2.

The second construction consists of attaching to a given quadrangulation
a suitable image of a cube. This eliminates one face of the given quadran-
gulation and one face of the cube, hence there is a net gain of four faces.
Applying this construction to the smallest quadrangulation just described
(F = 9), we first obtain F = 13 (see Figure 3), and then F = 17. Since now
the consecutive values F = 15, 16, 17, 18 are available, adding multiples of 4
completes the proof of Proposition 3.1.

Figure 2: A picture frame for a triangular picture, with pentagonal
cross section, and one for a pentagonal picture with a triangular cross
section.

Figure 3: An acoptic quadrangulation with F = 13 convex faces, obtained
by attaching a suitable image of a cube to a quadrangulation with F = 9.
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Figure 4: An acoptic quadrangulation with F = 14 convex faces.

A quadrangulation with F = 14 is shown in Figure 4; it is obtained
by a different construction. There are various alternative constructions of
quadrangulations for almost all values of F .

Conjecture 3.2. There exist no quadrangulations, of the kind described in
Proposition 3.1, with F = 10 or 11.

Proposition 3.3. If overarching faces are admitted, then acoptic quadran-
gulations with F faces exist for all F ≥ 9.

Proof. Examples with F = 10, 11 (the exceptional values in Proposition 3.1)
are shown in Figures 5 and 6. �

Figure 5: The steps in the construction of a quadrangulation with
F = 10 faces, some of which are overarching. The coordinates of the
vertices, and the lists of faces, are given in Table 1 in the Appendix.
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Figure 6: The construction of a quadrangulation with F = 11 faces,
from a picture frame for a triangular picture and with a triangular cross
section, and a prism over a dart-shaped quadrangle.

Conjecture 3.4. There exist no quadrangulations, of the kind described in
Propositions 3.1 and 3.3, with F ≤ 8.

Remark 3.5: All picture-frame quadrangulations obtained by the first con-
struction in the proof of Proposition 3.1 are combinatorially both isogonal
(vertex-transitive) and isohedral (face-transitive).
Remark 3.6: Schwörbel proves (see [16, 17, 23]) that all triangulations, quad-
rangulations and hexangulations in which the flags form one transitivity
class under combinatorial automorphisms are geometrically realizable as
acoptic polyhedra with possibly non-convex faces. (A flag is a triplet con-
sisting of mutually incident vertex, edge and face.)
Remark 3.7: A question deeper than the one considered in this paper is
whether all combinatorial quadrangulations of the torus that have no over-
arching faces can be geometrically realized provided non-convex faces are
admitted. An affirmative answer was conjectured in [9]. An indication
that admitting non-convex faces expands the family of acoptically realiz-
able quadrangulated tori is given by the Ljubic’ torus (see [9]); Simutis [18]
proved that this torus is not realizable with convex faces. Another confirm-
ing example (though not a quadrangulation) is the toroidal map shown in
Figure 7. It was shown in [6] that it is not geometrically realizable with
convex faces. However, in Figure 8 we show how to realize it with just one
non-convex face.

4. Quintangulations

In this case F must again be even.

Proposition 4.1. For every even F ≥ 12 there are convex-faced quintan-
gulations of the torus, except possibly for F = 14.

Proof. We start with trapezohedra, that is, Catalan polyhedra that are po-
lar to the antiprisms. For each p ≥ 3 such a polyhedron has 2p quadrangular



26 BRANKO GRÜNBAUM AND LAJOS SZILASSI

Figure 7: A toroidal map (denoted E in [6]) that is not geometrically
realizable with convex faces.

Figure 8: (a) Steps in the construction of the geometric realization of the
map in Figure 7. The coordinates of the vertices, and the lists of faces, are
given in Table 2 in the Appendix

Figure 8: (b) Two additional views of the polyhedron constructed in (a).
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faces, p meeting at each of two apices; the other vertices are 3-valent. By
using two such polyhedra, with coinciding axes and planes of symmetry, and
of appropriate sizes and positions, so that they mutually truncate all faces
(which become convex pentagons), we obtain a quintangulation with F = 4p.
An example is shown in Figure 9. By using appropriate chiral trapezohedra,
a similar construction can be performed on chains of q ≥ 3 trapezohedra,
yielding quintangulations with F = 2pq faces. In particular, by these con-
structions we obtain acoptic non-overarching convex-faced polyhedra with
F = 12, 16, 18, 20, 24, 28, . . . , with p-fold rotational symmetry. By attaching
a copy of the pentagonal dodecahedron the number of faces increases by 10,
hence yielding the missing values F = 22, 26, 30, 34, 38, . . . . This establishes
the proposition. �

Figure 9: An example of a quintangulation with F = 28; here p = 7, q = 2.

Conjecture 4.2. There is no quintangulation of the kind described in Propo-
sition 4.1, with 14 faces, or with fewer than 12 faces.

5. Hexangulations

For realizations without overarching faces we clearly have F ≥ 7. In
contrast to the cases considered above, here an infinite number of values of F
are undecided. This is clearly the most difficult, and hence most interesting,
of the kinds of polyhedra considered in this paper.

Proposition 5.1. Acoptic hexangulations with F faces, with no overarching
faces, exist for F = 7, and for all F = pq with p ≥ 3, q ≥ 3.

Proof. The hexangulation with F = 7 was found by Szilassi [20], and is
reproduced in several other venues (see, for example, [1, 19, 21, 22]). One
of the possible polyhedra is shown in Figure 10. �

The family of hexangulations with F = pq for p ≥ 3, q ≥ 3 can be
constructed by starting with the same trapezohedra (Catalan polyhedra
that are polar to the antiprisms) as in the proof of Proposition 4.1. For
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Figure 10: An example of a Szilassi torus, that is, a hexangulation with
F = 7. The coordinates of the vertices, and the lists of faces, are given in
Table 3 in the Appendix.

each p ≥ 3 such a polyhedron P has 2p quadrangular faces, p of which
meet at each of two apices of P . By intersecting such a polyhedron P with
a p-sided prism, having its axis coinciding with the axis of P and rotated
appropriately, the resulting tunnel has p hexagonal sides, and all 2p sides of
P become hexagons as well. This construction (for q = 3) has been described
for p = 3 by many writers, starting with Becker [3, 2]; see [7, 16, 21, 22]
and others. The resulting polyhedron is shown in Figure 11. An example of
this construction with p = 5 is shown in Figure 12. Since the construction
works for all p ≥ 3, this establishes the proposition for q = 3. For q ≥ 4
it is only necessary to replace P by the convex polyhedron Q obtained by
inserting, along the equatorial zigzag of P , q − 3 bands of hexagons, and
continuing with the constructions as for q = 3. The case of p = 3, q = 5 is
illustrated in Figure 13. The possibility of a geometric construction of Q as
a convex polyhedron with a p-fold axis of rotational symmetry is guaranteed
by Mani’s [13] generalization of Steinitz’s theorem on convex polyhedra (see
also [11, p. 296a] and [14]).

Other methods of constructing hexangulations with F = pq for p ≥ 3, q ≥
3 faces are illustrated in Figures 14, 15 and 16.

The hexangulations with F ≥ 9 faces exhibited so far are systematic (work
for various numbers of faces) and exhibit considerable symmetry. However,
for some of the missing values of F there are more complicated, asymmetric
possibilities, somewhat analogous to the case of F = 7. One such example
for F = 10 is shown in Figure 17. To understand its structure we show its
gradual build-up; as documentation we present in Table 4 in the Appendix
the coordinates of its vertices, and in Figure 18 its net.
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Figure 11: A hexangulation with F = 9 faces.

Figure 12: The construction of the text illustrated for p = 5, q = 3.

Figure 13: The construction of the text illustrated for p = 3, q = 5.
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Figure 14: An alternative construction of a hexangulation with p = 3, q = 5.
It generalizes the construction in Figure 11.

Figure 15: Another generalizable construction of a hexangulation with F =
15 faces.

Figure 16: Another construction of a hexangulation with F = 100 faces.
This can be generalized to other numbers of faces as well.
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Figure 17: Several steps in the construction of a hexangulation with F = 10
faces. A net of the polyhedron is shown in Figure 18, and coordinates of the
vertices are in Table 4 in the Appendix.

Figure 18: A net of the polyhedron shown in Figure 17.
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Remark 5.2: Other hexangulations with F = 4p, p ≥ 3, were found inde-
pendently by Schwörbel [16] and by Szilassi [22]. A short description can
be given by starting with a regular zigzag in 3-space consisting of 2p seg-
ments, and “thickening” it to a solid frame by L-shaped hexagons. This is
illustrated in Figure 19 for the case p = 3.

Figure 19: An illustration of the construction mentioned in Remark 5.2,
using L-shaped faces. Here p = 3, and the hexangulation has F = 4p = 12
faces.

Conjecture 5.3. There exist no hexangulations of the torus with F faces,
with no overarching or coplanar faces, when F = 8 or a prime number. Such
hexangulations exist for all F = 2p, where p is a prime number.

Remark 5.4: If overarching faces are admitted, additional hexangulations are
possible. Such a hexangulation with F = 8 was found by Schwörbel [16]. An
improved drawing of Schwörbel’s polyhedron is shown in Figure 20. It would
be interesting to investigate whether it is possible to extend the construction
mentioned in Remark 5.2 in order to find hexangulations with F equal to
twice a prime number and with faces having L-shape analogous to the faces
in Figures 19 and 20.

Remark 5.5: Schwörbel proved (see [16, 23]) that all triangulations, quad-
rangulations and hexangulations of the torus, in which the flags form one

Figure 20: A hexangulation with F = 8 overarching faces.
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transitivity class under combinatorial automorphisms, are geometrically re-
alizable as acoptic polyhedra with possibly non-convex faces.
Remark 5.6: In contrast to the situation concerning quintangulations, it is
well known that no hexangulation of the torus can have only convex faces
(see [4] and [11, p. 253]). The polyhedra of the type represented by Figure 13
have only six non-convex faces.

Conjecture 5.7. Every hexangulation of the torus has at least six non-
convex faces.

6. More general polyhedra

Many different kinds of geometric objects are called “polyhedra.” The
acoptic ones which we considered above are an immediate generalization of
convex polyhedra. While much more general polyhedra have been studied
(see, for example, [10]), in some sense it is reasonable to restrict the general-
ity to polyhedra of the Kepler-Poinsot type. This terminology was used by
Schulte and Wills [15] to indicate polyhedra that may have selfintersecting
faces, as well as intersections of faces in ways other than what is stipulated
for acoptic polyhedra. The name comes from the well-known regular star-
polyhedra, discovered in part by Kepler in the 17th century, and by Poinsot
in the 19th. However, other properties of acoptic polyhedra are assumed to
be satisfied. This includes the single circuits of faces incident with a vertex,
non-collinearity of adjacent edges of a face, and non-coplanarity of adjacent
faces. As with the Kepler-Poinsot regular polyhedra, overarching faces are
acceptable.

It is only natural that with a class of polyhedra wider than the acoptic
ones, several additional kinds of tori are possible. This eliminates some of
the restrictions in the propositions established above. Here are some of the
additional polyhedra.

(i) In Figure 21(a) we show the construction of a Kepler-Poinsot type
quadrangulation of the torus with F = 8 faces. As it has 16 edges
and 8 vertices, its Euler characteristic is 0. To verify that this poly-
hedron is orientable, hence isomorphic to a quadrangulation of the
torus, it is simplest to consider its map, shown in Figure 21(b). It
may be conjectured that no quadrangulation of the Kepler-Poinsot
type has fewer than 8 faces.

(ii) Another example is shown in Figure 22. It is hexangulation with
F = 11 faces. It has two pairs of intersecting faces, and one selfin-
tersecting face.

Conjecture 6.1. The polyhedra of Kepler-Poinsot type admit hexangula-
tions with F faces for all F ≥ 7.
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(a)

(b)

Figure 21: A quadrangulation of the Kepler-Poinsot type with F = 8 faces.
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Figure 22: A hexangulation with F = 11 faces. The coordinates of the
vertices, and the lists of faces, are given in Table 5 in the Appendix.
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“Euler3d” is free software designed to display polyhedra in 3-dimensional
space. It is currently available for the Windows operating system and may
be freely downloaded from http://www.euler3d.hu/index.php?lang=EN.

The polyhedron to be displayed has to be described by the numerical
coordinates of its vertices. The faces are given by the ordered vertices be-
longing to the face. When a face is registered, the program runs through
the following steps:

(1) Checks that the first three points determine a plane.
(2) If so, then all subsequent vertices must belong to this plane.
(3) Checks that the ordered sequence of vertices forms a simple polygon.
(4) If so, the face is drawn according the given order of vertices.

The software is further able to determine the given polyhedron’s dual with
respect to any base sphere except if the center of the sphere lies on a plane
determined by one of the faces. It is also possible to import objects described
in the VRML1 format. In particular, the software is capable of displaying
surfaces produced by MAPLE. Soon an upgrade will be available with the
additional capability of the user renaming the interface’s command options
in any language.

Since the above was written, L. Szilassi has found constructions for hexag-
onalizations with 8 and 11 faces that consist of selfintersection-free hexagons,
have no intersecting faces, and no overarching faces. Hence Conjecture 5.3
is resolved in the negative for these values. The construction is announced
and illustrated in an abstract “Some Regular Toroid,” submitted to the 11th
Annual Bridges Conference (Leeuwarden, The Netherlands, July 2008).
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A. Appendix

Table 1: Coordinates of the vertices of the polyhedron in Figure 5, and the
list of faces in terms of vertices.

Vertices Faces

1 (-32, 0, 4) (1, 2, 3, 4)

2 ( 16, -30, 4) (4, 2, 5, 6)

3 (-14, 0, 4) (4, 6, 7, 1)

4 ( 16, 30, 4) (2, 1, 7, 5)

5 ( 16, -15, -11) (2, 4, 8, 9)

6 ( 16, 15, -11) (2, 9, 10, 3)

7 ( -8, 0, -11) (3, 10, 8, 4)

8 ( 8, 10, 0) (7, 10, 9, 5)

9 ( 8, -10, 0) (7, 10, 8, 6)

10 ( -8, 0, 2) (6, 5, 9, 8)

Table 2: Coordinates of the vertices of the polyhedron in Figure 8, and the
list of faces in terms of vertices.

Vertices Faces

1 ( 0, -2, -4) (3, 5, 7, 8, 9) non-convex

2 ( 4, 4, -2) (2, 6, 9, 8, 4)

3 ( 2, -4, 0) (1, 4, 8, 7)

4 ( 4, -3, -4) (2, 4, 3)

5 (-4, -4, 0) (3, 4, 5)

6 ( 4, 4, 0) (1, 5, 4)

7 (-4, -4, -4) (1, 2, 3)

8 ( 4, -4, -4) (1, 3, 9, 6)

9 ( 4, -4, 3.2) (1, 6, 5)

(1, 7, 2)

(2, 7, 5, 6)
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Table 3: Coordinates of the vertices of the polyhedron in Figure 10, and
the list of faces in terms of vertices.

Vertices Faces

1 ( -24, 0, 24) ( 1, 2, 14, 10, 8, 6)

2 ( 24, 0, 24) ( 1, 6, 4, 3, 11, 13)

3 ( 0, -25.2, -24) ( 3, 5, 7, 8, 10, 11)

4 ( 0, 25.2, -24) ( 4, 6, 8, 7, 9, 12)

5 ( 4, -10, -16) ( 2, 5, 3, 4, 12, 14)

6 ( -4, 10, -16) (13, 9, 7, 5, 2, 1)

7 (-7.5, -7.5, -6) ( 9, 13, 11, 10, 14, 12)

8 ( 7.5, 7.5, -6)

9 ( 9, -5, 4)

10 ( -9, 5, 4)

11 ( -14, 0, 4)

12 ( 14, 0, 4)

13 ( -14, -5, 4)

14 ( 14, 5, 4)

Table 4: Coordinates of the vertices of the polyhedron in Figure 17, and
the list of faces in terms of vertices.

Vertices Vertices Faces

1 ( 3, -12, 9) 11 ( 0, -12, 12) ( 2, 3, 12, 13, 15, 14)

2 ( -3, -12, 3) 12 (1.5, -21, -6) ( 1, 4, 9, 15, 13, 11)

3 ( -3, -12, -6) 13 ( -4, -10, 16) ( 1, 2, 14, 16, 5, 4)

4 ( 3, 10.5, 9) 14 (-15, 12, -9) ( 9, 10, 17, 16, 14, 15)

5 ( -9, 4.5, 3) 15 (-15, 12, 27) ( 4, 5, 6, 8, 10, 9)

6 ( -6, 3, -6) 16 ( -9, 12, -3) ( 5, 6, 18, 19, 17, 16)

7 ( 6, -12, -6) 17 ( 0, 12, -12) ( 7, 8, 10, 17, 19, 20)

8 ( 6, 3, -6) 18 ( -6, -21, -6) ( 3, 7, 8, 6, 18, 12)

9 ( 0, 12, 12) 19 ( 0, -24, -12) (11, 13, 12, 18, 19, 20)

10 (24, 12, 12) 20 ( 24, -12, 12) ( 1, 2, 3, 7, 20, 11)
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Table 5: Coordinates of the vertices of the polyhedron in Figure 22, and
the list of faces in terms of vertices.

Vertices Faces

1 (-2.666665, 6.666666, -1.333332) ( 7, 8, 9, 21, 20, 22)

2 (-4.235293, 8.235295, 2.117647) ( 1, 11, 20, 21, 15, 13)

3 (-2.666666, -2.222221, -3.111110) ( 1, 2, 3, 4, 14, 13)

4 (-2.666666, -5.365853, -3.739836) ( 1, 2, 9, 8, 12, 11)

5 (-2.666666, -3.833332, -2.037036) ( 2, 3, 16, 15, 21, 9)

6 (-2.666666, -3.833332, 3.166666) (13, 14, 17, 18, 16, 15)

7 ( 1.035625, -1.982186, -0.535624) ( 4, 5, 10, 19, 17, 14)

8 ( 4.333333, -0.333332, 4.127334) ( 5, 6, 7, 8, 12, 10)

9 ( 1.044932, 2.955068, -0.522465) ( 3, 4, 5, 6, 18, 16)

10 (-1.117646, -3.058822, -1.176469) ( 6, 7, 22, 19, 17, 18)

11 ( 3.866667, 0.133333, -1.333332) (10, 12, 11, 20, 22, 19)

12 ( 4.333333, -0.333332, -2.266665)

13 (-3.212598, 5.826772, -0.409448)

14 (-3.839387, -2.791586, -0.879540)

15 (-2.482758, 4.275863, 0.137931)

16 (-2.666666, 4.000000, 0.000000)

17 (-1.974025, -1.532467, 0.519481)

18 (-2.666666, -0.666666, 0.000000)

19 (-0.974358, -1.769230, 0.256410)

20 ( 1.610954, -0.027788, 0.277890)

21 ( 0.840477, 2.376870, -0.811564)

22 ( 0.798084, -1.527533, -0.871507)
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