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Abstract. The simple question of the title has many different answers, depending on the 

kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the 

symmetries we require.  Known results and open problems about this topic are presented. 

 

 

The main classes of objects considered here are the following, listed in increasing 

generality: 

 Faces:  convex n-gons, starshaped n-gons, simple n-gons –– for n ! 3. 

 Polyhedra (in Euclidean 3-dimensional space):  convex polyhedra, starshaped 

polyhedra, acoptic polyhedra, polyhedra with selfintersections.  

 Symmetry properties of polyhedra P:  Isohedron –– all faces of P in one orbit 

under the group of symmetries of P;  monohedron –– all faces of P are mutually congru-

ent;  ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for 

"one").  If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)-

ekahedron, as appropriate. 

 We shall first describe the results that either can be found in the literature, or ob-

tained by slight modifications of these.  Then we shall show how two systematic ap-

proaches can be used to obtain results that are better –– although in some cases less visu-

ally attractive than the old ones. 

 There are many possible combinations of these classes of faces, polyhedra and 

symmetries, but considerable reductions in their number are possible; we start with one of 

these, which is well known even if it is hard to give specific references for precisely the 

assertion of Theorem 1. 

 Theorem 1. If P is an acoptic (k)-ekahedron of spherical type with simple poly-

gons as faces, then  k " 5. 

 Before recalling a proof of this assertion, we need to define the terms that appear 

in it and may be either not well known or ambiguous. 
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 A polyhedron is a family of simple planar polygons which in the context of this 

paper are supposed to be edge-sharing (each edge belongs to precisely two faces), and 

form a single circuit of at least three faces around each vertex.  We shall assume 

throughout that there are no pairs of coplanar faces and that the family is strongly con-

nected; this last condition means that any two faces are connected by a chain of faces in 

which adjacent terms share an edge. 

 A polyhedron is said to be acoptic (that is, not selfintersecting) if it is homeomor-

phic to a compact manifold.  If that manifold is a sphere, we say that the polyhedron is of 

spherical type. A polyhedron or polygon P is starshaped if there is a point x of P such 

that for each point y on the boundary of P the open segment xy does not meet the bound-

ary of P.  For spherical polygons the meaning of starshaped is the same but with arcs of 

great circles instead of segments. 

 With these definitions and understandings the proof is an immediate consequence 

of Euler's theorem, which implies that 

3 p3 + 2 p4 + p5 ! 12 + # 
k ! 6

 (k-6) pk , 

where  pj  is the number of faces with  j  sides.  Hence each polyhedron in Theorem 1 has 

some faces with five or fewer sides, and thus k " 5.   

 On the other hand, the example of the regular (Platonic) pentagonal dodecahedron 

shows that the bound in Theorem 1 can be attained even under the much stronger as-

sumptions of convexity of faces and polyhedra, and isohedrality (single orbit of faces un-

der symmetries of the polyhedron).  Moreover, there are many other polyhedra that are 

acoptic and (5)-isohedral with either convex pentagonal faces (an example is shown in 

Figure 1) –– or with non-convex but starshaped faces; see Figure 2, taken from [11], 

where many other illustrations are shown as well. 

 Even staying with convex pentagons, by gluing together two or more isohedra of 

the same kind we can get many other numbers F of faces for (5)-monohedra.  On the 

other hand, for each F ! 60 there are (5)-ekahedra with convex faces that are topological 

spheres. As shown recently [12], for each F ! 12 (except possibly F = 14) there are acop-

tic convex-faced (5)-ekahedra with F faces that are topological tori. 

 

 

Figure 1. An acoptic isohedron with 24 pentagonal faces. It is a pentagonal icositetrahe-

dron, a dual to the snub cube. 
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Figure 2. Acoptic, starshaped isohedra with 12, 24 or 60 starshaped pentagonal faces. 

From [11]. 

 In contrast to Theorem 1, admitting nonconvex (but starshaped) faces makes it 

possible to obtain acoptic (6)-ekahedra that are topological tori, for many values of the 

number F of faces; for more details see [12]. 

 If we admit (k)-isohedra with selfintersections, the bound in Theorem 1 does not 

apply even if we insist on convex faces. It is well known that  k = 6  is possible; see Fig-

ure 3 which shows the small triambic icosahedron [19, p. 46], also known as the triakis 

icosahedron [5, p. 271].  However, even among selfintersecting polyhedra I do not know 

of any other isohedron with convex hexagonal faces, and I venture the following guesses: 

 Conjecture 1.  There are no isohedra with convex hexagonal faces other than the 

small triambic icosahedron. 

 Conjecture 2.  There are no (k)-isohedra with convex faces for any k ! 7. 

 By gluing together copies of the triakis icosahedron one can obtain (6)-

monohedra (with selfintersections) and arbitrarily large numbers of convex hexagonal 

faces. Wills [21] presents a very symmetric 3-valent acoptic (9)-ekahedron with 24 non-

convex faces.  As established by McMullen et al. [15], [16], there are acoptic (k)-

ekahedra with convex faces, for arbitrarily large k. 

 Are there convex-faced acoptic (but not necessarily convex) monohedra with 

(congruent) hexagonal faces?  Monohedra with simple but not necessarily convex hex-

agonal faces?  I conjecture that there are none.   

 Conjecture 3.  There exist no acoptic (k)-monohedra with simple faces for any k 

! 6. 
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Figure 3.  The small triambic icosahedron (also known as triakis icosahedron) is a selfin-

tersecting isohedron with 20 convex hexagonal faces.  One such face is shaded; the 

lighter shading indicates the part of that face which is "hidden" by the union of three 

other faces.  This polyhedron can be interpreted as arising from a regular icosahedron by 

erecting on each face a 3-sided pyramid of such height that appropriate triangles become 

coplanar and determine a hexagon. It can also be described as the first stellation of the 

icosahedron. (See, for example, [5], [3], [19].) This orientable polyhedron has 60 edges 

and 32 vertices, hence it is of genus g = 5. (Note that the genus g of an orientable polyhe-

dron is determined by its Euler characteristic; in the present case 2(1–g) = 20 – 60 + 32 = 

–8, hence g = 5.  A basic theorem of topology of surfaces implies that a polyhedron of 

genus g is a continuous image of a sphere to which g “handles” have been added.) 

 

 What changes occur if we do not insist on polyhedra that are acoptic –– that is, if 

we admit selfintersections –– but still require the faces to be simple and the polyhedron to 

be isohedral?  This leads both to many polyhedra besides the triakis icosahedron, and to 

isohedra that have faces with more than six sides.  The presentation of the known results 

is the main aim of the present note. 

 There are two distinct constructions, both fairly general, of such isohedra; we 

shall describe them next. 

 The first is based on the well-known stellation of given isohedra as an intermedi-

ate step.  In many cases, from a stellation (which has a variety of "visible" pieces) we 

unite the coplanar parts with the portion of the plane they enclose, to reach a simple 

polygon. (In most situations that interest us, this polygon is starshaped.) We say that the 

isohedron that results by applying the symmetries of the starting isohedron is isomeghetic 

(that is, of equal extent) with the particular stellation used. The triakis icosahedron is a 

simple example of such constructions. 
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 The isohedron of Figure 4a appears as the "first stellation" of the rhombic do-

decahedron (see [6, page 127, or [13, Fig. 2] where an editorial comment states that it is 

"of course well known").  Our construction yields an isomeghetic (6)-isohedron with 

non-convex hexagons as faces shown in Figure 4b. In another guise, a different 

isomeghetic polyhedron appeared as one of the parallelogram-faced isohedra in [7, 

Fig.1]. In [2, Plate X, Fig. 13] another isomeghetic polyhedron with 24 quadrangles as 

faces is presented.    

 The "second stellation" of the rhombic dodecahedron (Figure 5, from [13, Fig. 3] 

can be interpreted as an (8)-isohedron with twelve nonconvex (simple) octagons as faces.  

(The editorial statement accompanying [13], to the effect that this polyhedron can be 

found in [2] appears based on a misunderstanding.)  This polyhedron has 48 edges and 30 

vertices, hence genus 4. 

 The two star-polyhedra (Figure 6) found by Kepler are stellations of the Platonic 

dodecahedron; they can be interpreted as selfintersecting (10)-isohedra having starshaped 

but nonconvex faces. 

 The second stellation of the icosahedron ([5, p. 271],  [3, Plate 1.C], [19, p. 43], 

[14, No. 02]) which is also the compound of five octahedra, is isomeghetic to an isohe-

dron with twenty faces and icosahedral symmetry, each face of which is a star-shaped 12-

gon (Figure 7a).  The final stellation of the icosahedron ([5, Plate 10], [3, Plate 3], [19, p. 

65], [14, No. 59]) can be interpreted as a starshaped (18)-isohedron with 20 starshaped 

faces, (Figure 7b); see also Remark 3.  Several other stellations of the icosahedron can be 

interpreted as (18)-isohedra.  However, neither of these has faces with maximal number 

of sides, among isohedra with starshaped faces. 

               

(a)             (b) 

Figure 4.  (a) A polyhedron, identified as the first stellation of the rhombic dodecahedron; 

from [13]. (b) An isomeghetic (6)-isohedral polyhedron with twelve nonconvex hexagons 

as faces; see Remark 3 for an explanation of the term "isomeghetic".  One of them is 

shown shaded; the part that is shaded in lighter color is obscured by parts of other faces.  

It has 36 edges and 20 vertices, and is therefore of genus  3.  
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Figure 5.  An (8)-isohedron with 12 star-shaped faces, each interpretable as the union of 

two squares that overlap in a sub-square with side equal to half those of the squares; it is 

isomeghetic with the second stellation of the rhombic dodecahedron. 

 

(a)     (b) 
Figure 6. (a)  A small stellated dodecahedron.  (b) A great stellated dodecahedron.  Each 

of these two regular star-polyhedra of Kepler can be interpreted as consisting of 12 star-

shaped decagons as faces. One face is heavily drawn in each polyhedron. 

 The largest known number of sides of faces of an isohedron occurs in another 

polyhedron, one that is isomeghetic to a different stellation of the icosahedron. It is the 

stellation denoted E by [3, Plate II] and [5, page 273], and called No. 09 by Maeder [14].  

The starshaped face is shown in Figure 8a; it has 30 edges, and this is the maximal num-

ber among all known isohedra.  We show no image of it since it is quite confusing and 

unhelpful. 
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 Conjecture 4. (k)-Isohedra with simple polygons as faces have k " 30.. 

 

        

Figure 7.  Two star-polygons with 12 resp. 18 edges, that can be used to construct isohe-

dra with 20 faces and icosahedral symmetry, that are isomeghetic with the second resp. 

final stellation of the icosahedron. 

  

 

      (a)           (b) 

Figure 8.  (a)  The face of an isohedron obtained from the stellation denoted E in [5] and 

[3].  It has 30 sides, which is the largest known number of sides of a face of an isohedron.  

(b) Part of the stellation pattern of the icosahedron, with the face in (a) superimposed on 

the lines of the pattern. 
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 The second general method of construction of isohedra with many-sided faces 

uses Möbius nets, obtained as follows. 

 The octahedral group of symmetries is generated by reflections in the nine planes 

of mirror symmetry of the cube (or the regular octahedron); similarly, the icosahedral 

group is generated by the 15 planes of mirror symmetry of the regular dodecahedron or 

icosahedron.  The tetrahedral symmetry is generated by the six mirrors, each determined 

by an edge and the midpoint of the opposite edge.  In each case, if these planes are inter-

sected by a sphere centered at their common point, the resulting great circles generate the 

octahedral (resp. icosahedral, resp. tetrahedral) Möbius net on the sphere.  Each such net 

is a tiling of the sphere by congruent triangles, and the symmetry group involved acts 

transitively on these triangles.  These three nets are shown in Figure 9; Figure 10 shows 

stereographic projections of the Möbius nets, which are sometimes more convenient to 

use.  In all this we are disregarding the similarly defined Möbius nets of the dihedral 

symmetry groups, since these are not interesting in the present context. 

This technique was apparently first used in [7], and has since found application in 

several other works [4], [12], [17]... . (The use of Möbius nets to construct isogonal poly-

hedra, and in particular, uniform ones, is well known.)  The idea of the construction is 

very simple.   

 

Figure 9.  The tetrahedral, octahedral, and icosahedral Möbius nets. 
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Figure 10.  Stereographic projections of the three Möbius nets. 

 In one of the three Möbius nets, let  S  be a union of triangles contained in an 

open hemisphere, with the boundary of  S  a simple spherical polygon.  Then images of  S  

under the group generated by reflections of the net yield an isohedral tiling of the sphere.  

If  S  is projected onto a plane such that no two vertices are at the same distance from the 

center of the sphere, we obtain a simple polygon  P.  The reflections in the planes of 

symmetry then generate either a strongly connected isohedral polyhedron, possibly with 

selfintersections, or else several such polyhedra.  In our search for polyhedra with large 

faces this construction is of the greatest interest.  Clearly, if  S  is starshaped on the 

sphere,  P is starshaped in its plane. 

 Several of the examples mentioned above can be obtained by this method –– al-

though they were originally found through other constructions.  This is shown in Figure 

11 by the sets  S  that correspond to the polyhedra in Figures 3, 4 and 6.  In the following 

figures we show sets S in the three Möbius nets that lead to isohedra with faces that have 

many edges –– in fact, in the tetrahedral and octahedral symmetry, more than any of the 

previously known examples.  

 We start with a set S in the tetrahedral net (Figure 12), leading to an isohedron 

with 24 hexagonal faces that are starshaped (Figure 13). Since an open hemisphere con-

tains at most seven vertices of the tetrahedral Möbius net, the possibility of heptagonal 
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faces is not excluded a priori.  However, a detailed (but tedious) analysis shows that six 

is the maximal possible number of edges in the boundary of a set S. This establishes: 

 

(a)       (b) 

 

(c) 

Figure 11. Examples of the Möbius nets construction that yield (a) the triakis icosahedron 

in Figure 3, (b) the polyhedron in Figure 4, and (c) the two regular star polyhedra of Ke-

pler shown in Figure 6.   
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 Theorem 2.  The 24-faced (6)-isohedron described in Figures 12 and 13 has star-

shaped hexagonal faces; six is the largest number of sides of faces of an isohedron with 

tetrahedral symmetry. 

 Turning now to isohedra with octahedral symmetry, we note that the highest num-

ber of sides in previously known polyhedra is eight, achieved by the polyhedron in Figure 

5.  However, the construction using Möbius nets yields isohedra with more sides to each 

face.  In Figure 14a we show a starshaped set S with eleven edges, and in Figure 14b a 

simple but non-starshaped set with 12 edges. In each case, our construction yields an 

isohedron with 48 faces.  The depiction of these polyhedra is beyond my abilities.  

 Conjecture 5.  The isohedra obtainable from the sets S in Figure 14 attain the 

maximal number of sides possible for isohedra with octahedral symmetry and starshaped 

resp. simple faces. 

       

(a)         (b) 

 

(c) 

Figure 12. (a) The unique polygon S in the tetrahedral Möbius net that has edges in the 

mirror lines, is contained in an open hemisphere, and has the maximal possible number of 

edges (six) among all such polygons.  (b) The same polygon S in a stereographic projec-

tion of the Möbius net.  (c)  A starshaped planar polygon P obtained by projecting S onto 

a plane parallel to the equator of a hemisphere that contains S. 
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Figure 13. The (6)-isohedron with 24 faces generated from the polygon P in Figure 12(c) 

by the reflections in the mirrors of the tetrahedral Möbius net.  All edges of the polyhe-

dron are shown, but only one face is shown filled-in, since presenting all faces leads to an 

unintelligible figure. 

 While the method of Möbius nets yields the optimal available results in cases of 

tetrahedral and octahedral symmetry, the situation changes in the icosahedral case.  The 

stellation E of the icosahedron, described above and illustrated in Figure 8 has starshaped 

faces with the maximal known number of sides (thirty), even among all isohedra with 

simple faces. The best I could find for the icosahedral Möbius net is the starshaped set S 

in Figure 15, with 19 sides, and the simple set S in Figure 16 with 27 sides. 

 Conjecture 6.  The isohedra obtainable from the sets S in Figures 15 and 16 at-

tain the maximal number of sides possible for isohedra arising from Möbius nets with 

icosahedral symmetry, and with starshaped resp. simple faces. 
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(a)        (b) 

Figure 14.  (a) A starshaped polygon S in the octahedral Möbius net, with 11 sides. An 

isohedron with 48 faces P results by the method outlined in the text. (b) A simple, not 

starshaped, polygon S in the octahedral Möbius net, with 12 sides; it also leads to an iso-

hedron with 48 faces P. These are the polyhedra with faces having the maximal known 

numbers of sides among those with octahedral symmetry and starshaped resp. simple 

faces. 

 

x

 

Figure 15.  A starshaped set S in the icosahedral Möbius net, with 19 sides. 
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Figure 16.  A simple set S in the icosahedral Möbius net, with 27 sides. 

Remarks. 

1. One of the results of McMullen et al. [15], [16], is the existence of 4-valent eka-

hedra with rather large genus, and with convex faces that have arbitrarily many sides.  

This is in contrast with the well-known result (see, for example, [1]) that 3-valent poly-

hedra with convex faces have genus 0 even without any symmetry assumption or restric-

tion on the numbers of sides of the faces.   

2. A related result explains why the above considerations did not include polyhedra 

with selfintersecting faces. In [8] isogonal prismatoids (polyhedra such that dihedral sym-

metry groups act transitively on their vertices) are constructed that are ekahedra with 

quadrangular faces and arbitrarily large valences.  The polars of these polyhedra are iso-

hedral, with dihedral symmetry groups and 4-valent vertices; they have faces of arbitrar-

ily many sides – however, these faces are selfintersecting.  It follows that they are not of 

any particular interest concerning questions we discussed here. 

3. A recent discussion on the Internet prompts the following elaboration on the 

statements above concerning Kepler’s star-polyhedra and the polyhedron discussed in 

connection with the 18-gon of Figure 7. 
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 In each of these cases, as well as in many other instances, there are at least three 

different ways of looking at the polyhedral object.  In the case of the small stellated do-

decahedron (Figure 6a, see Figure 17) we can consider as faces the 12 pentagrams (one is 

emphasized below at left), or the 12  starshaped decagons (middle) that we selected in the 

text, or the 60 triangles (below right) that constitute the surface of the solid object.  We 

ignored the first interpretation (which is the one under which the resulting polyhedron is 

regular) since we did not wish to consider as faces polygons with selfintersections.  We 

also ignored the last interpretation, since we are interested in faces with a large number of 

sides. The term !isomeghetic! (from Greek "meghethos" – extent) is used to indicate the 

relationship between these three interpretations of an object, and in other similar cases.  

The most important aspect of this situation is the realization that each of the interpreta-

tions is valid in its own context.  This makes inappropriate the frequent controversies 

about the "right" and "wrong" interpretations –– a controversy that goes back at least to 

Brückner's comments about Dostor, see [2, p. 16]. 

 

 Similar triplet of interpretations can be given for the (18)-isohedron with faces 

one of which is shown in Figure 7b.  As shown below in Figure 18, each face can be un-

derstood as a selfintersecting 9-gon, or as a starshaped 18-gon, and the resulting polyhe-

dron can also be interpreted as a solid bounded by 180 skinny triangles of two shapes. 

The last interpretation is the one connected with the term echidnahedron (apparently in-

troduced recently) for the last stellation of the icosahedron, see, for example, [20] or [18]. 

 
Figure 17. Three interpretations of the small stellated dodecahedron. 

 

Figure 18.  The three interpretations of the faces of the echidnahedron (the last stellation 

of the icosahedron). 
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4. When the number in Theorem 2 and the results on isohedra obtained from the oc-

tahedral Möbius net are considered together with the numbers of vertices in the respec-

tive nets, the following conjecture is almost inevitable: 

 Conjecture 7. The maximal number of sides of faces of isohedra with simple 

faces equals r/2 – 1, where  r  is the number of vertices in the corresponding Möbius net. 

 These numbers are 14, 26 and 62 respectively, and the explanation for the factor 

$ is that any open hemisphere contains at most one half of the vertices. The subtraction 

of 1 is somewhat mysterious, but probably can be justified. As mentioned after Theorem 

2, the bound is attained for the tetrahedral net. Conjecture 6 and Figure 14b show that the 

conjectured bound is attained for the octahedral net as well.  The situation in the case of 

the icosahedral symmetry is surprising: the bound (in the present conjecture, and in Con-

jecture 4) is attained –– but as far as known, only by an isohedron that is not arising by 

the Möbius net construction. 

5. Interesting problems arise in the Möbius net construction we used if the set S of 

spherical triangles has any symmetries.  In such a situation, if the plane used to construct 

the polygon P respects these symmetries, several outcomes are possible. In one view, the 

construction described above yields isohedra with sets of coinciding but distinguishable 

faces, that are adjacent by the same rules as the isohedra resulting from polygons in 

planes that are in general position (the kind of planes used above). This leads to isohedra 

that are polyhedra in the sense described in [9] and [10], more general than the definition 

used here. This interpretation can be justified by requiring continuity of the isohedra for 

continuous changes of the plane onto which the set S is projected. In the other view, the 

coinciding sets of faces are identified, and isohedra with smaller numbers of faces are 

produced. This comes at the price of loss of continuity.  For example, "excavating" 

pyramids on the faces of a regular tetrahedron leads to polyhedra that are combinatorially 

equivalent to the triakis tetrahedron.  However, in the approach of Shephard [17], this is 

not true for the case the excavating pyramids have equilateral triangles as faces.  See [10] 

for additional comments and illustrations. 
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