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ABSTRACT

A graph G of even order is weakly equipartite if for any partition of

its vertex set into subsets V1 and V2 of equal size the induced subgraphs

G[V1] and G[V2] are isomorphic. A complete characterization of (weakly)

equipartite graphs is derived. In particular, we show that each such graph

is vertex-transitive. In a subsequent paper, we use these results to charac-

terize equipartite polytopes, a geometric analogue of equipartite graphs.

1. Introduction

Classifications of combinatorial objects possessing a variety of symmetries have

been extensively studied. In this paper, we study a new kind of symmetric

graphs: equipartite graphs.

Definition: A graph G of order 2n is weakly equipartite if for any partition

of V (G) into two sets A and B of n vertices each, the subgraphs of G induced

by A and B are isomorphic. If there is an automorphism of G mapping A onto

B then G is equipartite.

Clearly, each equipartite graph is weakly equipartite. These notions were in-

troduced in [5] and are motivated by the study of a related notion of equipartite

polytopes.

Figures 1 and 2 show the list of all equipartite graphs of orders six and eight.

6K1 3K2 K3,3 \ 3K2 2K3

K6 K6 \ 3K2 2K3 + 3K2 K3,3

Figure 1. Equipartite graphs of order six.

In this paper, we obtain a complete characterization of weakly equipartite

graphs. Our characterization yields that every weakly equipartite graph is ac-

tually equipartite and also vertex-transitive. These results enable us to fully
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8K1 4K2 2C4 K4,4 \ 4K2 2K4

K8 K8 \ 4K2 2C4 2K4 + 4K2 K4,4

Figure 2. Equipartite graphs of order eight.

characterize equipartite polytopes and prove, in particular, that each equipar-

tite d-polytope has at most 2d + 2 vertices. These results are contained in a

subsequent paper [3] by the present authors.

We prove that for n = 3 and n ≥ 5 there are exactly 8 equipartite graphs

of order 2n; all generated by taking graph sums of subsets of three graphs:

{nK2, Kn,n \nK2, 2Kn}. Curiously, there are 10 equipartite graphs of order 8.

2. Preliminaries

We use standard graph theory terminology which can be found, e.g., in [2, 6].

A closed neighborhood N(v) of a vertex v in G is the set consisting of the

vertex v and all its neighbors. If A ⊆ V (G), then G[A] stands for the subgraph

induced by the vertices of A; Ac = V (G) \ A. A set A ⊆ V (G) is dominating

if each vertex of G is contained in A or adjacent to a vertex of A. Throughout

the paper, we often consider partitions of V (G) into two equal-size sets A and

B. If a ∈ A and b ∈ B, then the partition V (G) into the sets A′ and B′ where

A′ = (A\{a})∪{b} and B′ = (B\{b})∪{a} is said to be obtained by switching

the vertices a and b, or, for short, that we switch the vertices a and b.

A union of k vertex-disjoint copies of a graph G is denoted by kG. We write

G + H for an edge-disjoint union of two graphs G and H on the same vertex

set; the pairs of corresponding vertices will always be clear from the context.

Similarly, G \ H stands for a graph G without a subgraph isomorphic to H

(again, the graph G \ H will be uniquely determined by the context). This

notation is used in Figures 1 and 2.

A permutation group Γ acting on a set A0 of size 2n has the interchange

property [1] if for every n-element subset A ⊆ A0, there is a group element
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g ∈ Γ which interchanges A with its complement. Note that a graph G is

equipartite if and only if its symmetry group, acting as a permutation group

on the vertices of G, has the interchange property. Theorem 1 from [1] readily

translates to our setting as Lemma 1:

Lemma 1: If a graph G with 2n vertices is equipartite, then G is vertex-

transitive.

In the sequel, we show that even weakly equipartite graphs are vertex tran-

sitive and also equipartite.

Let us now state two lemmas on (weakly) equipartite graphs. The proof of

the first lemma follows directly from the definition.

Lemma 2: The complement of a weakly equipartite graph is weakly equipartite.

Lemma 3: Every weakly equipartite graph G of order 2n is regular.

Proof. Consider a graph G of order 2n that is not regular. Let v1, · · · , v2n be

the vertices of G and let di be the degree of the vertex vi. We can assume

that d1 ≥ d2 ≥ · · · ≥ d2n. Since G is not regular, d1 > d2n. Split the vertex

set of G into two parts A = {v1, . . . , vn} and B = {vn+1, . . . , v2n}. Let mAB

be the number of edges ab of G with a ∈ A and b ∈ B. The numbers of

edges of the subgraphs G[A] and G[B] are mA = (d1 + · · · + dn − mAB)/2 and

mB = (dn+1 + · · · + d2n − mAB)/2, respectively. Since d1 ≥ d2 ≥ · · · ≥ d2n

and d1 > d2n, we have mA > mB. But then the graphs G[A] and G[B] are not

isomorphic and G is not weakly equipartite.

We further restrict the vertex degrees that can appear in weakly equipar-

tite graphs. Note that Lemma 4 excludes the existence of a 2-regular weakly

equipartite graph of order 2n ≥ 12 but it does not exclude the existence of such

graphs of orders 4, 6, 8 and 10 (in fact, 2C4 is a 2-regular equipartite graph of

order 8).

Lemma 4: If G is a weakly equipartite graph of order 2n, then G is d-regular

where

d ∈ {0, 1, n− 3, n − 2, n − 1, n, n + 1, n + 2, 2n− 2, 2n− 1}.

Proof. To show that a d-regular graph G of order 2n is not weakly equipartite

it is enough to show that there is a dominating set A′ ⊂ V (G) of size ≤ n
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that contains N(v) for some vertex v ∈ G. Indeed, if such a set exists, then

we can add to it n − |A′| vertices to obtain a set A with n vertices such that

∆(G[A]) = d while ∆(G[Ac]) < d (since every vertex in Ac has a neighbor in

A) and the two graphs are not isomorphic.

Fix a weakly equipartite d-regular graph G of order 2n. By Lemma 2, we can

assume that d ≤ n. We note that if n ≤ 5, then the statement of the lemma

trivially holds since the set in the statement contains all integers between 0

and 2n − 1. So assume that G is of order 2n ≥ 12, and regular of degree d,

3 ≤ d ≤ n− 4 (the simple case d = 2 will be treated at the end separately). We

shall show that such a graph cannot be weakly-equipartite.

Let n = k(d+1)+ r; r < d+1. Let {N(v1), . . . , N(vm)} be a largest possible

set of mutually disjoint closed neighborhoods in G.

Claim: m(d + 1) > n. Otherwise, we can add vertices to
⋃m

1 N(vi) to obtain

a set A with n vertices and G, being weakly equipartite, implies that G[A] ∼=

G[Ac] and G[Ac] contains m mutually disjoint copies of closed neighborhoods

contradicting the maximality of m. The same argument shows that m = 2k =

2b n
d+1c.

For notational convenience, we assume first that r = 0. Since d ≤ n − 4

we must have k ≥ 2. Let A0 =
⋃k

1 N(vi), |A0| = n. Note that {v1, . . . , vk}

is a dominating set in G[A]; hence, if G, is weakly equipartite, then G[Ac]

also contains a set {vk+1, . . . , v2k} that dominates G[Ac]. It follows that D =

N(v1) ∪ {v2, . . . , v2k} is a dominating set in G of size (d + 1) + (2k − 1). Since

n = k(d+1), k ≥ 2 and d+1 ≥ 4 we have n = k(d+1) = (d+1)+(k−1)(d+1) ≥

(d + 1)+ 4(k− 1) ≥ (d + 1)+ (2k− 1). Hence G contains a dominating set D of

size ≤ n that includes a closed neighborhood so G cannot be weakly equipartite.

If r > 0 let A0 =
⋃k

1 N(vi). In this case, |A0| < n so we add to it n−|A0| ver-

tices from N(vk+1) containing vk+1 to obtain a set A with n vertices. As above,

G[A] ∼= G[Ac] and thus G[Ac] contains a dominating set {vk+2, . . . , v2k+2}. It

follows that D = N(v1)∪ {vk+2, . . . , v2k+2} is a dominating set of vertices in G

of size d + 1 + 2k + 1. If k = 1, then |D| = d + 4, and since n ≥ d + 4, |D| ≤ n.

For k > 1, n = k(d+1)+r ≥ (d+1)+(k−1)(d+1)+1 ≥ (d+1)+2k+1 = |D|

and again, G is not weakly equipartite.

When G is 2-regular, it is easy to see that the cycles C2k are not weakly

equipartite for k ≥ 4. Indeed, take for one set an arc of length k − 2 and add

to it the vertex in the middle of its complementary arc. You get one subgraph
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consisting of a path with an isolated vertex and the other graph will consist of

two disjoint paths of length ≥ 1 each. If G is a collection of cycles of total order

≥ 10 it is easy to see that it cannot be weakly equipartite. We leave the simple

argument to the reader.

3. Weakly equipartite graphs with small degrees

The proof of the theorem that characterizes weakly equipartite graphs is split

into several steps. We have already observed some general properties of weakly

equipartite graphs, in particular, that they are regular graphs with very re-

stricted degrees. Next, we focus on d-regular graphs of order 2n with d ≤ n−1.

We distinguish two cases based on whether the graph is disconnected or con-

nected. In Subsection 3.1, we show that the only disconnected weakly equipar-

tite graphs are 2nK1, nK2, 2C4 and 2Kn. In Subsection 3.2, we establish that,

in most cases, the only connected weakly equipartite bipartite graph of order 2n

with degrees smaller than n is the graph Kn,n \nK2. Our results are then com-

bined to provide a full characterization of equipartite and weakly equipartite

graphs in the next section.

3.1. Disconnected weakly equipartite graphs. First, we show that the

orders of all the components of a disconnected weakly equipartite graph are the

same.

Lemma 5: If G is a disconnected weakly equipartite graph, then all its compo-

nents have the same order.

Proof. Consider a weakly equipartite graph G of order 2n with k components

and let n1 ≥ · · · ≥ nk be their orders. In addition, let Γi be the component

of order ni. Choose k0 to be the smallest index such that n1 + · · · + nk0
≥ n.

If n1 + · · · + nk0
> n, let W be a subset of vertices of Γk0

of size w, where

w = n − n1 − · · · − nk0−1, such that the subgraph Γk0
[W ] is connected. Split

the vertex set of G into two parts A and B as follows:

A = V (Γ1) ∪ · · · ∪ V (Γk0−1) ∪ W

B = V (G) \ A.

The number of components of G[A] is k0 by the choice of the set A. Since G is

weakly equipartite, G[B] ∼= G[A]. In particular, the number of its components is
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also k0 and it contains a component Γj of order n1. However, such a component

of G[B] is also a component of G and therefore its index j > k0. It follows that

the first k0−1 components of G[A] are all of size n1, hence G[B] also has k0−1

components of order n1 and so is the order of Γk0
.

To prove Lemma 7 below, we need the following lemma [4, Lemma 1.15]:

Lemma 6: Let G be a 2-connected graph that is not complete. If G is not a

cycle, then G contains two nonadjacent vertices u and v such that the graph

G \ {u, v} is connected.

Lemma 7: If G is a disconnected weakly equipartite d-regular graph G with

d > 2, then G is a disjoint union of two cliques of the same order.

Proof. Let G be a disconnected weakly equipartite d-regular graph of order 2n

and k ≥ 2 components. By Lemma 5, the order of each component is equal to

2n/k. By Lemma 4, d ≥ n− 3. If all the components have order d+1, they are

complete graphs. Hence, the order of every component is at least d+2 ≥ n−1.

If there are more than two components, then 3(n−1) ≤ 2n which implies n ≤ 3

and d ≤ n − 1 ≤ 2, contrary to our assumption d > 2. We conclude that G

consists of two components of order n each.

Let Γ1 and Γ2 be the two components of G. We show that Γ1 is a complete

graph and since G is weakly equipartite so is Γ2. If Γ1 contains a cut-vertex v1

then it contains vertices of degree ≤ (n − 1)/2. Since d ≥ n − 3 we get that

(n − 1)/2 ≥ n − 3 or n ≤ 5. It is easy to check that no regular graphs of order

2n = 10 or 8 regular of degree d ≥ 3 with two isomorphic connected components

each have a cut vertex. We can conclude that Γ1 contains no cut-vertex, i.e.,

Γ1 is 2-connected.

Assume now that Γ1 is not a complete graph. Note that since d > 2 it is not

a cycle. By Lemma 6, Γ1 contains two nonadjacent vertices u and v such that

Γ1 \ {u, v} is connected. Let u′v′ be any edge of Γ2. Switch u and u′, and v

and v′ to get a partition of V (G) into A and B:

A = {u′, v′} ∪ (V (Γ1) \ {u, v})

B = {u, v} ∪ (V (Γ2) \ {u
′, v′}).

Observe that the number of components of G[A] is two and the number of com-

ponents of G[B] is at least three hence G is not weakly equipartite, contradicting

our assumptions. So Γ1 and Γ2 are complete graphs.
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We are now ready to characterize all disconnected weakly equipartite graphs.

Note that each disconnected weakly equipartite graph is also equipartite.

Theorem 8: Any disconnected weakly equipartite graph G is one of the fol-

lowing graphs:

2nK1, nK2, 2C4 and 2Kn.

Proof. It is straightforward to verify that the graphs 2nK1, nK2, 2C4 and 2Kn

are weakly equipartite. Consider a weakly equipartite disconnected graph G.

By Lemma 3, the graph G is d-regular for some d, and, by Lemma 5, all the

components of G have the same order.

If d = 0, then G is 2nK1. If d = 1, then G is nK2. On the other hand, if

d > 2, then G = 2Kn. Hence, we can assume that d = 2 and G is a disjoint

union of cycles of the same length ` ≥ 3.

If G contains more than two cycles, we can partition its vertices into a set

A that contains a cycle plus vertices from each of the other cycles. The graph

G[A] will contain a cycle while G[Ac] will not.

The graphs 2Ck, k > 5 and G are not weakly equipartite. To see this take a

partition that consists of a path of length k − 3 from one cycle and add to it a

pair of vertices that are not connected by an edge from the second cycle. This

graph will have 2 isolated vertices while the other will not. Hence, the only

2-regular disconnected weakly equipartite graphs are: 2K3 and 2C4.

3.2. Connected weakly equipartite graphs. First, we prove a lemma

describing a very special structure that each d-regular weakly equipartite graph

of order 2n with d ≤ n − 1 contains.

Lemma 9: Let G be a weakly equipartite d-regular graph of order 2n with

d ≤ n − 1 and let v0 be an arbitrary vertex of G. Then, there is a subset

A ⊂ V (G) with |A| = n such that N(v0) ⊆ A and G[A] \ N(v0) is a set of

isolated vertices in G[A].

Proof. Let A0 be an n-vertex subset V (G) containing N(v0) that minimizes
∑

dG[A0](v) : v ∈ G[A0]\N(v0). If A0 is of the form described in the statement

of the lemma, we are done. Otherwise, there exists a vertex v ∈ G[A0] \ N(v0)

joined by an edge to another vertex of A0. As G is weakly equipartite, let v′0
be the counterpart of the vertex v0 in G[Ac

0]. Note that all d neighbors of v′0
are contained in Ac

0.
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The set A′

0 obtained by switching v and v′0 contains N(v0). In addition,

the vertex v′0 is an isolated vertex in G[A′

0]. Therefore,
∑

dG[A′

0
](v) : v ∈

G[A′

0]\N(v0) <
∑

dG[A0](v) : v ∈ G[A0]\N(v0) contradicting the choice of the

set A0.

Now we show that all weakly equipartite connected regular graphs of order

2n with maximum degree at most n − 1 are bipartite.

Lemma 10: If G is a weakly equipartite connected d-regular graph of order 2n

with n − 3 ≤ d ≤ n − 1, then G is bipartite.

Proof. Let k = n − 1 − d. Note that k is 0, 1 or 2. Fix a set A ⊆ V (G) of size

n as described in Lemma 9. Let γA be a vertex of degreed d contained in A,

ΓA = N(γA) and XA the independent set consisting of the k isolated vertices of

G[A]. Let B = Ac. Since the graph G is weakly equipartite, the subgraph G[B]

is isomorphic to G[A]. Let ΓB , γB and XB be isomorphic images of ΓA, γA and

XA in G[B], respectively. In addition, let Γ′

A = ΓA \ γA and Γ′

B = ΓB \ γB (see

Figure 3).

A B γBγA

Γ′

BΓ′

A

XBXA

A B γBγA

Γ′

BΓ′

A

XBXA z

y′ yx

Figure 3. Notation used in the proof of Lemma 10.

Clearly, Γ′

A and Γ′

B are isomorphic. We show that both graphs Γ′

A and Γ′

B

consist of isolated vertices by considering three distinct cases. This will imply
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that G is bipartite since its vertex set can be partitioned into two independent

sets {γB} ∪ Γ′

A ∪ XA and {γA} ∪ Γ′

B ∪ XB.

First, assume for the sake of contradiction that the graphs Γ′

A and Γ′

B are

connected. Since G is connected, Γ′

A contains a vertex x adjacent to a vertex

from the set B which cannot be γB. Consider the set A∗ obtained from A and

B by switching x and γB . The subgraph G[A∗] consists of k + 2 components

precisely: one of them is formed by the vertex γA and its d − 1 neighbors in

A∗ and the remaining components are isolated vertices, namely, the vertex γB

and the k vertices of XA. On the other hand, the subgraph G[A∗c] consists

of at most k + 1 components. To see this, note that G[B \ {γB}] consists of

k+1 components: (Γ′

B and the isolated vertices of XB) and since x is joined by

an edge to a vertex of B and this vertex cannot be γB (because the neighbors

of γB are in B) the vertex x is not isolated in G[A∗c]. Hence, G[A∗c] consists

of at most k + 1 components contradicting our assumption that G is weakly

equipartite.

Assume now that the graphs Γ′

A and Γ′

B are formed by at least two compo-

nents each, and not all are isolated vertices.

Choose x to be any non-isolated vertex of Γ′

A. Since the graph G is d-regular,

x is adjacent to a vertex of B. We consider the sets A′ and B′ obtained from A

and B by switching the vertices x and γB. Note that G[A′] is formed by k + 2

components: one of them is formed by the vertex γA and its d − 1 neighbors

in A′ and the remaining components are isolated vertices, namely, the vertex

γB and the k vertices of XA. Since the graph G[A′] contains a vertex of degree

d− 1 (the vertex γA), G[B′] also contains a vertex x0 of degree d− 1. Since the

degree of x in G[B′] is at most d − 2 (x has at least two neighbors in ΓA) and

the degrees of the vertices of XB are at most one (they can be only adjacent

to x), x0 must belong to Γ′

B. If x0 were not adjacent to x, then its d − 1

neighbors would have to be all the vertices of Γ′

B and Γ′

B would be formed by

a single component contrary to our assumption. Hence, x0 is adjacent to x and

its remaining neighbors are the remaining d − 2 vertices of Γ′

B. We conclude

that Γ′

B consists of precisely two components: one formed by d− 1 vertices and

the other is an isolated vertex y.

Since G[A′] contains k + 1 isolated vertices and G[B \ {γB}] contains k + 1

isolated vertices (y and XB), the vertex x cannot be adjacent to y. Since we can

choose as x any vertex of the component of Γ′

A of order d− 1, we conclude that

y can be adjacent only to its counterpart y′ in A, the vertices of XA and the
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vertex γB . Similarly, an isolated vertex z of B is adjacent to no neighbor of γA

with a possible exception of y′. Consequently, if k = 0, the degree of y does not

exceed two and if k = 1 the degree of z does not exceed two, which contradicts

our assumption that d ≥ 3. Hence, k = 2. Let z be one of the isolated vertices

in G[B]. Since z can be adjacent only to y′ and the k vertices from XA, its

degree is 3, so d = 3 and since d ≥ n − 3 the only remaining possibility is a

connected cubic graph of order 12. In Lemma 12 we prove that no connected

cubic graphs of order 12 are weakly equipartite.

We can now characterize weakly equipartite connected bipartite regular

graphs:

Lemma 11: Let G be a weakly equipartite, bipartite connected d-regular graph

of order 2n with 3 ≤ d ≤ n − 1. Then, G = Kn,n \ nK2.

Proof. Let V1 and V2 be the two independent sets that partition G. Since G is

regular, we have |V1| = |V2|. By Lemma 4, d ∈ {n−3, n−2, n−1}. If d = n−1,

then G = Kn,n \ nK2. We now exclude the cases d = n − 3 and d = n − 2.

As the first step, we find vertices w and w′ of V1 and x and y of V2 such that

w is adjacent neither to x nor y and w′ is adjacent to both x and y. If d = n−2,

choose w to be a vertex of V1 and let x and y be the two vertices of V2 which

are not adjacent to w. Note that n ≥ 5 because d ≥ 3. Since 2d = 2n − 4 > n,

x and y share a common neighbor w′ ∈ V2.

If d = n − 3, let w be again a vertex of V1 and let x, y and z be the three

vertices of V2 which are not adjacent to w. Note that n ≥ 6 because d ≥ 3.

Since 3d = 3n − 9 > n, at least two of the vertices x, y and z have a common

neighbor. Assume that x and y are such two vertices and w′ is their common

neighbor.

We now proceed jointly for both cases. Consider the sets A and B obtained

from V1 and V2 by switching w and x, and w′ and y. The degrees of x and y in

G[A] are exactly d− 1 by the choice of w and w′. Each vertex of V1 is adjacent

to at least one vertex of V2 \{x, y} (recall that d is at least three) and thus each

vertex of V1 has degree at most d − 1 in G[A]. Hence ∆(G[A]) ≤ d − 1. On

the other hand, G[B] contains a vertex of degree d (the vertex w). Hence, the

subgraphs G[A] and G[B] are not isomorphic. Therefore, d is neither n− 3 nor

n − 2.
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4. Characterization of equipartite and weakly equipartite graphs

Before we prove Theorem 13, we note that 2-regular graphs were dealt with in

Lemma 4 and there is a single size of 3-regular weakly equipartite graphs not

covered by results in the previous two sections:

Lemma 12: There is no weakly equipartite cubic graph of order 12.

Proof. Let G be a cubic graph of order 2n = 12. Assume for the sake of

contradiction that G is weakly equipartite.

Assume first that the graph G is triangle-free. Let v0 be any vertex of G

and let A be a set of vertices of G as in Lemma 9, i.e., the subgraph G[A]

is isomorphic to K1,3 + K1 + K1. Let B = V (G) \ A. Since the graph G is

weakly equipartite, the subgraph G[B] is isomorphic to G[A]. Let v′0 be the

counterpart of v0 in G[B]. Since G is cubic, all the neighbors of v0 are in A and

all the neighbors of v′0 in B. In particular, the sets A′ = (A \ {v0}) ∪ {v′0} and

B′ = (B \ {v0}) ∪ {v′0} are independent. Since A′ ∪ B′ = V (G), the graph G is

bipartite. Since the girth of such graphs is 4, we can find vertices w, w′ in one

partition and x, y in the other partition which are related, as described. But

there is no weakly equipartite cubic bipartite graph of order 12 in Lemma 11.

By the same argument, G is not equipartite.

We may assume that G contains a triangle, say v1v2v3. Let {v1, v2, v3} ⊂ A1

be a subset of six vertices of V (G) and let B1 = V (G)\A1. Since the subgraphs

G[A1] and G[B1] are isomorphic, G[B1] contains a triangle, say v4v5v6. Let

A2 = {v1, v2, v3, v4, v5, v6} and B2 = V (G)\A2. Since G[A2] and G[B2] are iso-

morphic, G[B2] contains two vertex-disjoint triangles, say v7v8v9 and v10v11v12.

Consider now the following two sets A and B (see Figure 4):

A = {v1, v2, v3, v4, v7, v10}

B = {v5, v6, v8, v9, v11, v12}.

Again, since G[A] contains a triangle, G[B] contains a triangle, too. Observe

now that the maximum degree of G[B] is two because each vertex of B has at

least one neighbor among the vertices v4, v7 and v10 (which are contained in

A). Thus, a triangle contained in G[B] actually forms a component of G[B]. In

addition, the graph G[B] contains a perfect matching (consider the edges v5v6,

v8v9 and v11v12). But this is impossible because one of the components of G[B]

is a triangle, a contradiction.
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A

B

v1 v2 v3 v4 v7 v10

v5 v6 v8 v9 v11 v12

Figure 4. The notation used in the proof of Lemma 12.

We are ready now to characterize weakly equipartite graphs. Let us recall

that all weakly equipartite graphs of order six and eight are depicted in Figures 1

and 2.

Theorem 13: A graph G is weakly equipartite if and only if it is one of the

following graphs:

2nK1, nK2, 2C4, Kn, n \ nK2 and 2Kn

or one of their complements:

K2n, K2n \ 2Kn, K8 \ 2C4, 2Kn + nK2 and Kn, n.

Proof. It is straightforward to verify that all the graphs listed in the state-

ment of the theorem are weakly equipartite. We prove that no other graph

is weakly equipartite. Fix a weakly equipartite graph G of order 2n. By

Lemma 3, G is d-regular for some d. By Lemma 2, we can assume that

d ≤ n− 1 (otherwise, we consider the complement of G), and, by Lemma 4, we

get d ∈ {0, 1, n− 3, n − 2, n− 1}.

By Theorem 8, if G is disconnected, then it is one of the graphs 2nK1, nK2,

2C4 and 2Kn. Let us assume in the rest that G is connected and d ≥ 2 (if

d = 1, then G = nK2). If d = 2, then G is a cycle and its length is either four

or six by Lemma 4. Note that C4 is K2,2 and C6 is K3,3 \ 3K2. In the rest, we

assume that d ≥ 3.

This means that d ≥ n−3, n ≥ 6 and the graph G is bipartite by Lemma 10.

The case that remains to be considered is that d = n − 3 and n ≤ 6. Recall

that d ≥ 3. Therefore, d = 3 and n = 6. However, there is no weakly equipartite

cubic graph of order 12 by Lemma 12.

An immediate corollary of Theorem 13 is the following:
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Corollary 14: A graph G of order 2n is equipartite if and only if it is weakly

equipartite, and every weakly equipartite graph is vertex-transitive.

5. Concluding remarks

A relaxation of the notion of equipartite graphs also seems to be of some interest:

Problem 1: A graph G of order 2n is degree-equipartite if for every n-element

set A ⊆ V (G), the degree sequences of the graphs G[A] and G[V (G) \ A] are

the same. Which graphs G are degree-equipartite? In particular, is there a

degree-equipartite graph which is not equipartite?

We also note that if G and H are edge disjoint equipartite graphs on the same

set of vertices then so is the graph G+H . The three graphs: nK2, Kn,n \nK2,

2Kn generate all equpartite graphs for n ≥ 5. When n = 4, 2C4 does not have

a “parallel” for n > 4.
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