
ON A CONJECTURE OF H. HADWIGER

BRANKO GRUNBAUM

l For any convex body (i.e., compact convex set with interior
points) K in the Euclidean plane E2 let i(K) denote the greatest integer
with the following property:

There exist translates Kn, 1 ^ n ^ i(K), of K such that

K Π Knφφ for all n;

Int Kn n Int Km = φ for n=£ m.

It is well known (see e.g., Hadwiger [3]) that 7 S i(K) g 9 for
any K c E2,1 and that the bounds are attained (e.g., i{K) = 7 if Z" is
a circle, i(jfiΓ) = 9 if if is a parallelogram). Hadwiger conjectured,2

moreover, that if K is not a parallelogram, then ί(iΓ) = 7.
We shall establish Hadwiger's conjecture in the following theorem:
/ / K is not a parallelogram, then i{K)—Ί. Moreover, if 7 translates

o K satisfy conditions (1) then one of them coincides with K.
In the proof we shall use some results on centrally symmetric

convex sets; they are collected in § 2. The proof of the theorem follows
in §3. In §4 we make some remarks on related problems in higher-
dimensional spaces. § 5 contains some results on the related problem
on the number of translates of a convex set needed to ''enclose'' the
set.

2* Let K be any centrally symmetric plane convex body with the
origin 0 as center. Then a Minkowski geometry, with norm || ||, is
defined in the plane, for which K is the unit cell.

We note the following propositions:
( i ) For any point x with \\x\\ — 1 there exist points y, z satis-

fying \\y\\ = | | 2 | | = | | x — y \\ = \\y — z\\ = \\x + z\\ = 1. (In other words,

any x e F r o n t K is a vertex of a t least one affine-regular hexagon whose

vertices belong to Front K).

(ii) Let x, yf z be different points belonging to Front K, such that
the origin 0 does not belong to that open half-plane determined by x
and y which contains z. Then \\x — y\\^\\x — z\\, with equality taking
place only in case y,z, and (y — x)l\\y — x \\ belong to a straight-line
segment contained in Front K.
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1 Related results, pertaining to more general sets, are given in [4].
2 Oral communication from Dr. H. Debrunner.
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(iii) Let x, y, z, u be different points belonging to Front K, such
that z and u belong to an open half-plane determined by x and y, while
0 belongs to its complement. Then either \\x — y\\ = \\z — u\\ = 2 or
\\x-y\\>\\z-u\\.

Proofs of (i) have been given in [5], [6], [9]; (ii) and (iii) are proved
in [2].

(iv) Let ^ , l < i g 8 , be such that || yi || = 1, \\yt — y51| Ξ> 1 for
1 Φ j . Then K is a parallelogram.

Proof. Since in Minkowski geometry a straight-line segment is a
path of minimal length between two points, the above hypotheses imply
that the perimeter of K is ^ 8 (in the Minkowski metric). But it is
well known (see, e.g., [6], [9]) that the unit cell of any Minkowski plane
has a perimeter ^ 8; moreover, the same proofs easily yield also the
fact that the perimeter equals 8 only if if is a parallelogram, which
ends the proof of (iv).

( v ) If there exists a set Y = {yif 1 <; i <̂  7} c Front K such that

II Vi — Vj II ̂  1 for i Φ j , then K is a parallelogram.

Proof. Let + xi9 i — 1, 2, 3, be the vertices of any affine-regular
hexagon H inscribed in K (such hexagons exist by (i)). We note that:

(a) If two points of Y are opposite vertices of H, then Yϋ(— Y)
contains 8 points satisfying the assumptions of (iv), and therefore K is
a parallelogram;

(b) No pair of points yify3eY can belong to the interior of a
small arc of Front K determined by two neighboring vertices of H, since
in such a case (iii) would imply that || yi — y51| < 1.

Now, if (a) does not hold, it is clear that we may find H such that,
after suitably changing the indices if necessary, the following relations
hold {< denotes equality, or precedence according to a fixed orientation
of Front K):

%i = Vi < y* < %2 < y* < %s < y* < — χi, V2 Φ χ%, y* Φ ~ %i

Then (ii) implies that || y1 — y2 \\ = 1, and that y39xify3f %z belong to a
maximal straight-line segment [α, b] c Front K, with xx •< a < x2. Now,
if ?/4 e [α, b] we have || a — b \\ ̂  2 which establishes if as a parallelo-
gram. Let us therefore assume y±$\a, 6]. Jointly with y±Φ — xλ this
implies that y2 = α, y3 = a — xl9 and || y3 — y2 \\ = 1, since otherwise the
affine-regular hexagon with vertices ±xlf ±a, ±(a — xt) would yield
the situation described in (b). Now || yz — (— xt) || = || a || = 1 and
II2/3 — 2/4II ^ 1 imply, by (ii), that || y3 — y, \\ = 1 and that y4, — xlf and
— a are points of a segment [— α, c] c Front K, which is obviously
adjacent to the segment [— a, — b].
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Using (ii) repeatedly we see that — xx < yδ and y5 Φ — x1 therefore
— b — xλ < yQ and yQ Φ — b — x19 so — b <yΊ with y7 Φ — b. But this

is impossible since it would imply || y1 — y7 || < || xλ + b \\ = 1. Accord-
ingly, y4 must belong to [α, 6], and (v) is proved.

(vi) If P = — P is a parallelogram, if C is a convex set, and if
P = (1/2)[C + (— C)], ίften C = P + x /or α suitable point x.

Proof. Considering the supporting lines of P it is immediate that
C must be a parallelogram with sides parallel to those of P; therefore
P = (1/2)[C + ( - C)] implies that C is a translate of P.

REMARK. The author is indebted to Professor E. G. Straus for the
remark that (vi) has to be used in order to complete the original proof
of the theorem. Professor Straus also observed that if K is a centrally
symmetric plane convex body different from a parallelogram, then
K=(1I2)[C + (— C)] for some C which is not a translate of K. The
following particularly simple proof of this fact was given by Dr. E.
Asplund:

Inscribe an affine regular hexagon H in P (see (i)) and construct a
•curve (1/2)C consisting of translates of the arcs of the boundary of P
which are determined by alternate sides of H. It is easy to see that
(1/2)C is not homothetic to the boundary of P unless P is a parallelo-
gram. On the other hand (1/2)C has constant width 1 in the Minkowski
metric whose unit sphere is P (it is in fact a Reuleux triangle for that
metric) and thus — (1/2)C + (1/2)C is the sphere P as the only centrally
symmetric body of constant width.

The related question of non-trivial decomposability of centrally sym-
metric convex bodies in three-dimensional space seems to be much more
complicated. Using results of Gale [1] it is easily established that
parallelepipeds, octahedra and other centrally-symmetric anti-prisms, as
well as other sets, are only trivially decomposable in the form (1/2)[C +
< - C)].

3 We now turn to the proof of our theorem. First of all we
remark that without loss of generality we may assume K to be centrally
symmetric. Indeed, if K is any convex set, (l/2)[if + (— K)] is cen-
trally symmetric; but, as has been noted by Minkowski [8] and used
also by Hadwiger [3], (x + K)Π(y + K) and (x + (l/2)[iί + ( - K)])Π
(y + (1J2)[K + (— K)]) are simultaneously empty, non-empty, or have
interior points. Therefore, (vi) implies that the general case follows
from the symmetric one.

Assuming now that K is centrally symmetric and that the trans-
lates Kn = zn + K satisfy conditions (1), we construct a new family of
translates {Kl} as follows: If zn — 0 we put K* = Kn; if zn Φ 0, we
define iΓ* = (2zJ\\ zn ||) + K. The family AT* then satisfies the conditions
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(1). Indeed, if* n if obviously contains yn = zj\\ zn || (resp. j / n = 0 if
zn = 0), and for n Φ m we have

(2)

since (1), assumed to hold for the family {Kn}, implies

Int (\zn + K) Π Int( μzm + K) = φ for any λ, μ ^ 1.

Now, (2) implies that \\2yn - 2ym\\ ^2, i.e., \\yn-ym\\^l, and
therefore the theorem follows from (v).

4 The number i(K) may be defined in the same way for convex
bodies in any Euclidean space. Hadwiger proved that ί(K) ^ 3fc for
K c Ek, the bound being attained for fc-dimensional parallelotopes. On
the other hand we have:

If KaE* then i(K) ^ k2 + k + 1.

Proof. As above, we may without loss of generality assume that
K is centrally symmetric with center 0. Let the points xt, 0 ̂  i ^ k,
satisfy || xt — x3 || = 2 for i Φ j , where the norm is taken in the
Minkowski metric determined by K. (The existence of such a family
{Xi} may be established by obvious continuity arguments.) Then the
k2 + k + 1 sets xt — x5 + if, for 0 ̂  ί, j ^ k, satisfy conditions (1).
Thus our assertion is established.

The above estimate i(K) ^ k2 + k + 1 is the best possible; it is
attained if K is, e.g., a simplex. This is obvious for k ^ 3, and may
be established also in the general case.

As a generalization of the result of §1, we conjecture that i(K) is
odd for any K and that any odd value between k2 + k + 1 and 3fc is
assumed. The last part of the conjecture is easily verified for k = 3.

5. We end with a related result. Following [4], we shall say that
a set A encloses a set B if every unbounded connected set which inter-
sects B also intersects A. For any convex body K in the Euclidean
plane let e(K) denote the smallest natural number with the property;

There exist translates Kny 1 ̂  n ^ e{K), such that

Int K n Int Kn = φ for all n

U ifw encloses K.

With this terminology we have
// K is not a parallelogram, then e(K) = 6. For a parallelogram

P, e(P) = 4.
This result may be established by the same methods we used in
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§§2 and 3. Using the conventions of §2, the main step of the proof
(which is used instead of (iv) and (v)) may be formulated as follows:

(vii) If Y= {yt; 1 ̂  i S 5} c Front K with \\ y€ - yi+1 || ^ 1 and
Vi < Vί+i for all i (yQ = yj, and if the origin belongs to the convex
hull of Yf then K is a parallelogram.

We may also mention another theorem of a similar kind, established
by Levi [7]: If K is a convex body in the plane, different from a par-
allelogram, then there exist three translates of Int K such that their
union covers K (and therefore encloses it). For centrally symmetric
sets a stronger theorem of the same type is given in [2].
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