
  Geombinatorics 18(2008), 5 – 12 
[4,3]-Configurations with Many Symmetries 

Branko Grünbaum 
University of Washington, Box 354350, Seattle, WA 98195 

e-mail: grunbaum@math.washington.edu 
 

Dedicated to memory of my admired teacher, Aryeh Dvoretzky, 
who passed away earlier today (May 8, 2008) 

 A family of points and lines in the Euclidean or projective 
plane is called a [q,k]-configuration provided each of the points is 
incident with precisely q of the lines, and each line with precisely k 
of the points. If there are p points and n lines, we say that it is a 
(pq,nk) configuration. If q = k then obviously p = n, and we talk 
about a k-configuration or an (nk) configuration. 

 3-configurations have been studied for well over a century, and 
4-configuration have received increasing attention over the last 20 
years – in GEOMBINATORICS and other journals. Scant atten-
tion has been given in the literature to [q,k]-configurations with   
q ≠ k.  Some references will be given at the end of this note. 

 The main purpose here is to present a method of construction 
of [4,3]-configurations that appears to be new. The interest in the 
construction arises from the following fact. Various [3,4]-
configurations have been described and are easy to find – all that is 
needed is the set of vertices of two suitable concentric regular 
polygons, with some of their diagonal lines. See Figure 1.  How-
ever, all these and other known examples with considerable sym-
metry have lines going through the "center" of the configuration. 
Hence, if one tries to construct [4,3]-configurations by taking im-
ages of the [3,4]-configurations under polar reciprocation, one 
winds up either with configurations lacking the symmetry (if the 
center of the reciprocating circle does not coincide with the center 
of the configuration), or with configurations that involve "ideal 
points" (points at infinity). Most other constructions yield only 
asymmetric configurations, see Figure 2. Our construction of 
(p4,n3) configurations yields them directly, apparently for all feasi-
ble values of  p ≥ 15.  Examples are shown in Figures 5, 6 and 7. 
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Figure 1. Two examples of configurations (203,154) with a high 
degree of symmetry. 

 
Figure 2. Two (124,163) configurations. The one at left lacks sym-
metry, the other has "points at infinity" in the extended Euclidean 
plane. 

 
 We note that purely combinatorial considerations show that 
necessary conditions for the existence of a (p4,n3) configuration are 
4p = 3n, p ≥ 0, n ≥ 10.  It follows that the only possible configura-
tions must have the form ((3r)4,(4r)3), for r ≥ 3.  It is well known 
(and not hard to prove) that the case r = 3 can be realized only 
combinatorially, and not with geometric configurations we con-
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sider here. For r = 4, that is, for configurations (124,183) and 
(183,124) various examples are known, many based on families of 
points on cubic curves. An example of the former appears in Fig-
ure 3. For larger values of r our construction yields the first pub-
lished images of the [4,3]-configurations.  Clearly, polarity pro-
duces analogous images of the [3,4]-configurations, which we do 
not show. 
 To explain the construction we need to recall the "polycyclic 
configurations" (n3) described by Boben and Pisanski [3], in par-
ticular the tricyclic ones. The tricyclic configurations depend on 
several discrete parameters and one real-valued parameter; the dis-
crete parameters are used in the symbol m#(b,c,d;e) for a family of 
configurations that are mutually isomorphic (have the same inci-
dences), and the continuous parameter t0 distinguishes between the 
various members of that family. We explain the construction of the 
tricyclic configurations ((3m)3) by using the example of the con-
figuration we denote 6#(2,1,2;4), with t0 = 0.526588; it is illus-
trated in Figure 4. 

 
Figure 3. A(124, 163) configuration, with points on a cubic curve. 
The equation of the curve, and the coordinates of the points, are 
available from the author. Adapted from Metelka [7]. 
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6#(2,1,2;4)  t0 = 0.526588; t1 = 0.61252 

Figure 4. An illustration of the construction of tricyclic configura-
tions (n3), exemplified by the configuration m#(b,c,d;e) = 
6#(2,1,2;4).  The meaning of the parameters is explained in the 
text. 
 We start by selecting the vertices of a regular convex m-gon, 
and denote them by B0, B1, ...Bm-1, in the counterclockwise direc-
tion. The points B0 and Bb determine a line L0 of the configuration, 
and similarly Bj and Bj+b determine a line Lj for all j.  On L0 we 
locate the point C0 such that the ratio B0C0/B0Bb is t0, and similarly 
for the points Cj on Lj.  On the line through Cj and Cj+c we choose a 
point Dj such that CjDj/CjCj+c = t1, where t1 is a number still to be 
determined.  The line through Dj and Dj+d should pass through the 
point Bj+e. Carrying through the algebra, we find that the other pa-
rameters generate a quadratic equation for t1; it can have two, one 
or no real solutions. Each such solution determines a tricyclic con-
figuration.  The value of t1 depends on the choice of t0 and the ge-
ometry of the configuration, even though the incidences are the 
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same. This is crucial to our construction.  In Figure 4, as in later 
ones, the points B0, C0, D0 are marked by larger dots than the re-
maining points, with decreasing size of the three. 

 The idea of the construction of the [4,3]-configurations is to 
start with a tricyclic m#(b,c,d;e) configuration, and choose t0 such 
that (with the resulting t1) B0 becomes collinear with Cx and Dy, for 
appropriate integers x and y.  For the configuration 6#(2,1,2;4) in 
Figure 4 this is illustrated in Figure 5; the t0 value in the former is 
the one that yields the (184,243) configuration in the latter. In gen-
eral, for any given m#(b,c,d;e), there may be several (or no) suit-
able values of the parameters t0 and t1, as well as x and y. 
 

 
6#(2,1,2;4) 

t0 = 0.526588; t1 = 0.61252; x = 5; y = 1 

Figure 5. A [4,3]-configuration (184,243) obtained from the tri-
cyclic configuration (183) in Figure 4. The fourth line (through B0, 
C5 and D1) is emphasized. 
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 In Figures 6 and 7 we show additional examples of configura-
tion (154,203) and (214,283) obtained by our construction. 

 It would be very desirable to determine all parameters m, b, c, 
d, e, t0, t1, that yield [4,3]-configurations, or at least to characterize 
the discrete parameters that result in such configurations.  How-
ever, we are unable to do that, for a variety of reasons. 

 
Figure 6. Two (154,203) configurations, both 5#(2,1,3;2) with x = 4 
and y = 0.  For the first t0 = 0.562796, t1 =0.51946; for the second 
t0 = 0.477389, t1 = 8.01928. 
 

 
Figure 7. Two (214,283) configurations, both 7#(2,1,3;5) with y = 
0.  For the first t0 = 0.521921, t1 =8.3525, x = 3; for the second t0 = 
0.484401, t1 = 8.07463, x = 6. 
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 The main difficulty is that the discrete parameters appear in the 
crucial algebraic equations for the ti's in coefficients that involve 
trigonometric functions in complicated ways, so that neither com-
puter algebra nor any manual tricks could give explicit relations.  
Naturally, for any given selection of the discrete parameters, it is 
easy to obtain numerical solutions; this is how the diagrams in this 
note were drawn. 
 Extensive experimentation leads to the conviction that for all 
m ≥ 5, the choice (b,c,d) = (2,2,2) can be paired with suitable val-
ues of  e and the ti's.  However, even this remains only a conjec-
ture.  The situation is similar for many other selections of (b,c,d), 
but there is not enough numerical evidence to conjecture a charac-
terization of such parameters, or of the values of e that may be 
used with them.  An example of a larger [4,3]-configuration is 
shown in Figure 8. 

 
Figure 8. A (454,603) configuration 15#(3,2,2;6), with x = 3 and 
y = 2. 
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 The only geometric [4,3]- and [3,4]-configurations that have 
been extensively investigated are (124,163) and their duals. Many 
references to the corresponding papers can be found in [3] and [4], 
where it is also stated that there are exactly 574 combinatorial con-
figurations (124,163). However, the number of geometrically real-
izable ones is not known; the investigation of that question is com-
plicated by the fact that in several of the publications it is not clear 
whether the plane they consider is the Euclidean or the complex 
plane. As mentioned earlier, in the literature there is no considera-
tion of [4,3]-configurations with n ≥ 15 and with any reasonable 
symmetry in the Euclidean plane. 

 Some geometric [q,k]-configurations with q ≥ 4, k ≥ 4, q ≠ k, 
are discussed in [1], [2] and [5]. 
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