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As DISCRETE AND COMBINATORIAL GEOMETRY (abbreviated to
DCG in the sequel) turns 20, due to the fortunate effect of my longevity I
can contemplate the development of Discrete Geometry over the last 50 years,
and the role DCG played in that development.

The early development of Discrete Geometry, and of Discrete Mathematics
in general, was fueled by the many easily stated unsolved problems that were
circulated in the 1950’s and 1960’s. Prominent among these were the problems
that Hugo Hadwiger regularly published in Elemente der Mathematik, as well
as the many papers and talks by Paul Erdős that challenged the imagination of
a generation of young mathematicians. A collection of 50 “Poorly formulated
unsolved problems in combinatorial geometry” was put together in 1963 by Leo
Moser. After 1977 his brother, Willy Moser, together with János Pach (since
1986) have repeatedly expanded and privately distributed the collection. These
editions served as the basis of the more survey-like recent book “Research Prob-
lems in Discrete Geometry” by Brass, Moser, and Pach [4]. Another collection
of unsolved problems was widely circulated in the 1960’s in mimeographed form
by Vic Klee [20] and led to a number of papers; it was meant to form part of
a joint project with P. Erdős, L. Fejes Tóth and H. Hadwiger, but this never
materialized. Instead, Hadwiger collected and expanded his problems proposed
earlier in a booklet, coauthored with Hans Debrunner [17]; English and Russian
translations, both including additional material, were prepared by V. Klee, and
by S. S. Ryškov and I. M. Yaglom, respectively.

Over the recent years, Discrete Geometry—that originally consisted mainly
of the theory of packing, covering and tiling—expanded vastly to include many
other geometric topics, such as configurations of points, lines, pseudolines,
planes, etc., oriented matroids, Helly-type results, the structure of polytopes,
rigidity, linkages, Erdős-type distance problems, tessellations, geometric graphs,
combinatorial complexity of geometric objects, geometric transversal theory,
and many others. As mentioned by W. Kuperberg [22] in his review of [4], the
lines separating discrete geometry from the theory of convex polytopes, combi-
natorics and graph theory became blurred.

A long-running department in the American Mathematical Monthly pro-

1



moted unsolved problems, many of a Discrete Geometry nature. Similarly,
some of the problems in a section of the journal Discrete Mathematics were of a
Discrete Geometry nature. Another collection of Discrete Geometry problems
that circulated for many years was that of Harald Croft. It was expanded into
a well-received book [6] coauthored with K. J. Falconer and R. K. Guy. Vic
Klee and Stan Wagon published an interesting collection of solved and unsolved
problems [21].

The availability of great computing power and computer graphics has had
an invigorating effect on many topics in Discrete Geometry, and has been whole-
heartedly embraced by most practitioners. As with all new tools, new questions
arose concerning the computational difficulty of various questions. This led to
many of the advances featured in DCG.

Several developments can serve to illustrate the changed status of Discrete
Geometry and Discrete Mathematics in general. One is the almost unimaginable
deepening of the mathematics involved. Whereas earlier publications can be said
to present the easy pickings in the fields they cover, the tendency of the more
recent works is to tease out the finer and harder results. Many of the latter
require very careful estimates and ingenious constructions.

In many branches of mathematics the past few decades have seen the solu-
tion of old problems that have stymied researchers for decades or longer. In the
theory of convex polytopes, some 35 years ago came the almost simultaneous
proofs of the upper bound conjecture by Peter McMullen [26], and of the lower
bound conjecture by David Barnette [2], [3]. These advances served as the start-
ing point for the deep and detailed study of various aspects of convex polytopes,
many in DCG. But these developments have been in a certain sense very simple
compared to other advances in Discrete Geometry and related fields. I have in
mind the proof of the four-color theorem by Appel and Haken [1], and of the
Kepler conjecture by Hales [18]. In both cases, the degree of complexity was
such that reliance on a very extensive and sophisticated computational compo-
nent appears unavoidable; as a consequence, checking the proofs has become
a very major undertaking, with only few people having the resources and the
inclination to verify all details.

However, it should also be noted that in some of the widely publicized ad-
vances in other fields (Andrew Wiles’ solution of the Fermat problem, Grigory
Perelman’s work on Poincaré conjecture) the verification has become entangled
in difficulties due not to the use of computers but because of extremely ad-
vanced and specialized results from a variety of other fields—to such an extent
that even collectives of referees have been stumped.

Let me turn now to other important—even though less spectacular—advances
in Discrete Geometry concerning topics with which I am personally more in-
volved. It will be noted that this explicitly excludes a large part of the works
published in DCG and devoted to various other aspect of Discrete Geometry,
and to all of Computational Geometry, with which I am not sufficiently familiar.

The investigation of Venn diagrams was once considered as ending in the
three circles made popular in very basic math courses. It has since blossomed
into a very sophisticated geometric discipline, with connections to group theory,
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Figure 1. Figure 2.

lattice theory and other branches. I flatter myself that this development started
with my papers [10] and [11], see Figures 1 and 2. It is amusing to note that
[10] was rejected by both the American Mathematical Monthly and the Mathe-
matical Gazette, before being accepted by the Mathematics Magazine and then
earning the Allendoerfer award of the Mathematical Association of America.
Recent years have brought spectacular advances in the understanding of Venn
diagrams, while still leaving many unsolved problems that are easy to formu-
late and understand. The extent of the development and changed status of the
topic is best seen in detailed survey given by Frank Ruskey [30] and the recent
paper [29], the lead article in the December 2006 issue of the Notices of the
AMS. But the outstanding question in the topic—whether simple symmetric
Venn diagrams with 11 or more sets exist—is still open.

Figure 3. Figure 4.

The theory of configurations of points and lines in the plane was somnolent
for almost a century, despite the book by Levi [23], the chapter on configura-
tions in the popular book by Hilbert and Cohn-Vossen [19], and several papers
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by Coxeter (in particular, [5]). More recently, the study of configurations took
off due to several developments. On the one hand, the first ever diagrams of
(n4) configurations were produced [15], see Figure 3 (see also Figure 4). On
the other hand, T. Pisanski and M. Boben recently found serious errors in ba-
sic results concerning the enumeration and construction of (n3) configurations;
these results were supposed to have been established long ago—in the nine-
teenth century—by V. Martinetti [24] and Steinitz [31]. Also, applications of
computer algebra yielded the fact that for n ≤ 12 all configurations possible
in the real Euclidean plane are possible in the rational plane as well. Each of
these directions led to many new investigations and unexpected results, as well
as lots of open questions; a recent survey with detailed description of results
and problems is [13].

oo
oo

Figure 5(a). Figure 5(b).

The theory of arrangements of lines in the plane, and more generally of hy-
perplanes in higher dimensions, went far beyond the simple questions considered
since the times of Jacob Steiner nearly two centuries ago. Many extremal and
other problems have been considered, and relations to algebraic geometry and
other fields investigated. Among other open questions is the problem of deter-
mining all simplicial arrangements, still unsolved even in the plane; see Figure 5.
Several recent surveys of arrangements (in the plane, and in higher dimensions)
are available, together with indications of their use in various fields and many
open problems. In particular, we should mention [7], Chapter 5 of [8], and parts
of [28], [25] and [4].

The theory of tilings, in particular in the plane, has roots going to antiquity.
More recently it has become quite popular, in part because of its relation to
aperiodic and quasiperiodic tilings. Starting with [16], this has engendered
many books and articles—several in DCG. Many of the publications are related
to physical aspects.

The theory of not-necessarily convex polyhedra in the Euclidean 3-space has
also had significant advances. This topic stagnated since early in the twentieth
century, and was revived towards its end. The renewed interest led to the
consideration of several specific classes of such polyhedra, but more importantly
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Figure 6.

it underlined the need for a consistent theory of polyhedra more general than
the convex ones. This has now been developed (see [12], and Figure 6). It
turned out to essentially coincide with the 3-dimensional case of the “abstract
polytopes” of McMullen and Schulte [27]. However, the geometric reach of this
work on abstract polytopes is limited by the insistence on what the authors
term “faithful representations”.

One additional new phenomenon is the widespread collaboration by multiple
authors. While joint publications by two authors have long been an accepted
feature in journals (as well as for books), the recent years have seen a surge in
papers with three, four, or more authors. This is in part attributable to the
ease of communication made possible by email and other electronic means. The
possibility of quick interchange led to a much faster spread of ideas. In turn,
this led to the many new approaches evident in the papers published by DCG
and elsewhere.

Another new development that comes from the maturing of digital technol-
ogy is the increased accessibility of a great portion of the literature. In many
large research institutions (such as my home university) people enjoy almost
unlimited access, free to the individual, to digital publications and repositories.
In contrast, many of the workers at smaller institutions are not as fortunate. It
is a sad fact that even the pricing of Mathematical Reviews (or MatSciNet) is
imposing a heavy burden on people in such institutions. A similar inequality
existed earlier, through differences in library holdings of various institutions.
But one might have hoped that this would disappear, or at least be mitigated,
in the digital age.

On the debit side of the proliferation of joint authorships and of papers in
general one has to keep in mind the tremendous pressure on young researchers
to come up with a long list of publications at the time of promotion and/or
tenure, and even of primary employment.

In the 1950’s there were no journals devoted to Discrete Mathematics. In
fact, most journals were of a general character. The acceptable (and published)
papers in this field were, on the whole, at a much lower level of technical com-
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plication and conceptual sophistication than has become the rule in later years.
As a side-effect of the increasing specialization of publications (and of math-

ematicians) several new journals were started, devoted mainly to Discrete Math-
ematics and some more particularly to Discrete Geometry. Unfortunately, this
was accompanied by takeover of Enseignement Mathématique and of Geome-
triae Dedicata by editorial boards or publishers that were ignoring the original
aims of the journals. The same is true for many conferences, such as the “Cox-
eter Legacy” where more than a half of the papers and presentations were less
geometric than what Coxeter would have appreciated.

After surveying some of the directions of Discrete Geometry, a question that
arises naturally is: Where is Discrete Geometry going? The only honest answer
I can give is that I do not know. It is extremely hard to handicap the many
emerging directions of investigation. For me, this uncertainty is increased by
the very reason that led to the writing of this article. The longevity that gives
perspective on the past implies, as a corollary, reaching old age. This, in turn,
means a poor understanding of novel ideas and a regrettable tendency to see
the future as a continuation in the tracks made in the past.

Finally, what about the future of DCG?
Excellent as the record of this journal has proved itself over the last two

decades, I would venture to make three suggestions.
One is the active recruitment and solicitation of surveys of the different di-

rections in which Discrete Geometry is actively developing. These should not
be surveys written for popular consumption—readers unfamiliar with discrete
geometry could hardly be expected to read them. Instead, the surveys should
be authoritative accounts meant for generally knowledgeable people not special-
izing in a particular subfield.

Another is motivated by the availability of online versions of the published
papers; this is certainly a step in the right direction. But the utilization of
web-based possibilities could be enhanced by having a parallel online repository
of detailed accounts of which only short reports would appear in the printed
journal. This could be used for extensive tables or collections of diagrams, of
accounts of proofs the length of which makes them unsuitable for the printed
version. It could also be used for the surveys mentioned above, which in this
mode could be kept up-to-date much more easily than in print.

Lastly, it is a fact that besides the academically oriented activities reflected in
journals and meetings, there is a “parallel universe” of people communicating
through the web, at a variety of levels of knowledge, but with a very high
degree of enthusiasm. Many parts of the communications happening there are
best left alone—because they reflect ignorance of well-known facts. However,
the enthusiasm and energy invested in these web pages often contain genuinely
new knowledge and interesting ideas and problems. It would be worthwhile
to try to establish a connection with this universe, and make the interesting
parts available to the academic community in the pages of DISCRETE AND
COMBINATORIAL GEOMETRY.

* * * * *
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The good fortune aspect of my long life was amplified by the acquaintance—
and in several cases friendship—with many great mathematicians of the third
quarter of the twentieth century, that had a more than passing interest in Dis-
crete Geometry. This list would include H. Buseman, H. S. M. Coxeter, L.
Danzer, A. Dvoretzky, P. Erdős, L. Fejes Tóth, W. Fenchel, H. Hadwiger, V.
Klee, L. Moser, T. S. Motzkin, H. Rademacher, G. Ringel, I. J. Schoenberg,
G. C. Shephard, and others, as well as many younger people that are still ac-
tively producing research mathematics. I’ll never cease being grateful for their
insights, inspirations, comments, and other kinds of support.

References

[1] K. Appel and W. Haken, Every Planar Map is Four Colorable. Contem-
porary Mathematics, vol. 98. American Mathematical Society 1989.

[2] D. W. Barnette, The minimum number of vertices of a simple polytope.
Israel J. of Mathematics 10(1971),pp. 121–125.

[3] D. Barnette, A proof of the lower bound conjecture. Pacific J. of Math-
ematics 46(1973), pp. 349–354.

[4] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geome-
try. Springer, New York 2005.

[5] H. S. M. Coxeter, Self-dual configurations and regular graphs. Bull.
Amer. Math. Soc. 56(1950), pp. 413–455. (= Twelve Geometric Essays,
Southern Illinois Univ. Press, Carbondale, IL, 1968 = The Beauty of Geome-
try, Dover, Mineola, NY, 1999, pp. 106–149.)

[6] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geom-
etry. Springer, New York, 1991, 1994.

[7] S. Felsner, Geometric Graphs and Arrangements. Vieweg, Wiesbaden,
2004.

[8] J. E. Goodman and J. O’Rourke, eds. Handbook 0f Discrete and Com-
putational Geometry, 2nd ed.Chapman & Hall/CRC, 2004.
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