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An  ( n4) configuration is a family of  n  points and  n
(straight) lines in the Euclidean plane such that each point is on pre-
cisely four of the lines, and each line contains precisely four of the
points.  A configuration is connected if it is possible to reach every
point starting from an arbitrary point and stepping to other points
only if they are on one of the lines of the configuration.  

In a series of papers leading to [4] it was shown that connected
(n4)  configurations exist for all  n ≥ 21,  with the possible exception
of certain  ten values,  namely n = 22, 23, 26, 29, 31, 32, 34, 37, 38,
43.  Also open was the existence of any configurations with n ≤ 20;
it was conjectured in [5] and [4], and widely believed, that no such
configurations are possible.

The last few months have seen considerable advances in the in-
formation available on  (n4)  configurations.  This resulted in the
following:

Theorem.  Connected  (n4)  configurations exist if and only if
n ≥ 18,  except possibly if  n  has one of the eight values  18, 19, 22,
23, 26, 34, 37, 43.

We shall assume that the reader has access to [4], and therefore
we restrict attention to  n ≤ 20 and n = 29, 31, 32 and 38.  It is con-
venient to first recall some recent results on configurations of "pseu-
dolines".
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A family of simple curves in the (projective or Euclidean) plane
is a family of pseudolines provided each curve differs from a straight
line by at most one segment of the line, and any two curves have at
most one point in common, at which they cross each other.  (This is
equivalent to the definition in [2].)  Configurations of pseudolines
are defined in complete analogy to configurations of lines.  Configu-
rations of pseudolines can be interpreted as topological analogues of
configurations of lines, and clearly every configuration of lines can
be interpreted as a configuration of pseudolines.  On the other hand,
it is well known that there exist unstretchable configurations of
pseudolines, that is, such configurations that are not combinatorially
equivalent to configurations of lines.

A result of [2] is the following analogue of our theorem: There
exists an  (n4)  configuration of pseudolines if and only if  n ≥ 17.
Moreover, in still unpublished work, J. Bokowski and  L. Schewe
have shown that there is a unique configuration (174) of pseudolines,
and that it is unstretchable.

Turning now to the proof of our theorem, we see that we need to
consider only  n ≥ 18.  The cases  n = 18  and  n = 19  are still unde-
cided (hence listed in the theorem).  However, for  n = 20  we have
the following new construction, illustrated in Figure 1, which can be
extended to all  n ≥ 20  divisible by 4.

The construction starts with an astral configuration (103); recall
from [3] that a configuration (103) is astral provided there are two
orbits of points and two orbits of lines under Euclidean symmetries
of the configuration.  It is known that there is a unique astral con-
figuration (103), which is shown in Figure 1 of [3], it also appears as
the heavily drawn part of the illustration of Figure 1 below.  The
construction of our (204) configuration is completed by placing a
second copy of the (103) configuration, suitably reduced, in such a
position that each of its line passes through one of the points of the
first configuration, and each of its points lies on one of the original
lines.  Easy continuity arguments show that such choice is possible
in the unique way shown in Figure 1.  
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Figure 1.  The heavy lines and larger dots indicate an astral  (103)
configuration. Taking a suitably shrunk and rotated second copy
yields the desired  (204)  configuration.

As mentioned above, exactly the same construction works for
other astral (n3) configurations, leading to configurations ((2n)4).
The one case of interest in connection with our theorem is the case
n = 16.  This leads to the configuration  (324) – which is one of the
now-resolved cases that were open in [4].  This configuration is
shown in Figure 2.
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Figure 2.  A (324) configuration obtained from two copies of an as-
tral (163) configuration by the method explained in the text.

Concerning  the other two new values of  n  for which the exis-
tence of (n4) configurations has been established we cannot repro-
duce here the diagrams.  A configuration  (384) can be constructed
by starting with two copies of the configuration (204), deleting an
appropriate line and an appropriate point from each, and combining
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suitably distorted images to restore the incidence of each point with
four lines.  We note that this is a variant of the construction of (534)
used in [4], see Figure 3 of that paper.  The author will gladly e-mail
a .pdf image of the (384) configuration to interested readers.

Finally, the construction of configurations (294) and (314), using
completely different ideas from the methods used here, has been
achieved by Juergen Bokowski and Lars Schewe.  It will appear in a
separate publication.

This completes the proof of our Theorem.

Remarks.
1. The construction of a (284) configuration was described in [5];
however, it has never been drawn in any intelligible manner.  The
method we used above for the construction of the (204) and (324)
configurations yields various (284) configurations, starting from the
several (143) configurations.  One of these (284) configurations is
shown in Figure 3.
2. The construction of the configurations in Figures 1, 2, and 3
shows a remarkable feature: although the (n3) configurations used
have cyclic symmetry but no mirror symmetry, the resulting configu-
rations have dihedral symmetry.
3. It is an often observed phenomenon that after a first example is
found, additional ones come at a fast pace –– frequently simpler than
the original.  In case of (254) configurations which have been con-
structed only recently, by now eight different configurations are
known.  They are mainly due to still unpublished work of J. Bok-
owski and T. Pisanski. Other examples of this nature are shown in
the following figures.
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Figure 3.  A configuration  (284) obtained from one of the astral
(143)  configurations.

In Figure 4 is shown a (324) configuration distinct from the one
in Figure 2. It has two orbits of points and three orbits of lines.

A method of constructing a (354) configuration was described in
[5].  However, this configuration does not lend itself to intelligible
presentation by diagrams.  In Figure 5 are shown four simple exam-
ples of  (354)  configurations.  All are derived from polycyclic (spe-
cifically 3-cyclic)  configurations  (424)  by omitting one half of



Page 7

Figure 4.  A (324) configuration with only two orbits of points.

points of one transitivity class and the lines incident with them, and
adding appropriate lines to restore the correct number of incidences.
(Concerning polycyclic configurations see [1].)
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Figure 5.  Four examples of configurations  (354).


