
Euler’s ratio-sum theorem and generalizations

Branko Grünbaum
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Over the centuries, many papers have been written about relations among

different parts of a triangle. Well-known mathematicians as well as others

have contributed to these discoveries. The main aim of this note is to show

how asking the right questions can lead to new facts and to far-reaching

generalizations that retain an elementary nature and would have been un-

derstandable to mathematicians of ages past.

Our starting point is one of the results of Euler’s paper [5], which shows

that

QB1/A1B1 + QB2/A2B2 + QB3/A3B3 = 1. (∗)

We use the notation indicated in Figure 1, with Q an arbitrary point in the

plane of the arbitrary triangle A1A2A3, and Bi the intersection point of the

cevian line QiQ with the side opposite Ai. Here and throughout, the only

restriction is that all the points are well-defined and all the lengths appearing

in the denominators are not zero. The lengths are understood as signed

lengths; since only ratios of collinear segments are considered, the positive

1Professor Klamkin passed away in the summer of 2004. As a friend and a mathemati-

cian he will be sorely missed by many of us. Professor Klamkin was still able to see the

referees’ comments on our paper, and approve the proposed final version of it. A variety

of unfortunate circumstances delayed the sending of that version to the Editor. But this

had the silver lining contained in part (vii) of the last section, added September 15, 2005.
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Figure 1: An example illustrating the notation used in Euler’s theorem and

in Theorem 1

direction on the lines carrying the segments is irrelevant. Euler gives several

proofs that use various elementary geometric or trigonometric arguments. We

shall provide a simple proof, and show how this result can be generalized in a

variety of ways: to analogues of triangles in three and higher dimensions, to

polygons with more than three sides and their higher-dimensional analogues,

and to other ratio-sums.

We shall first discuss the version of Euler’s result that holds for d-dimensional

simplices, that is, the simplest polytopes of dimension d — the analogues of

the triangles in the plane and tetrahedra in 3-space. We shall tie this with a

presentation of similar results on the five other ratio-sums that can be defined

using cevians; so far, these seem to have received scant attention. In contrast

to Euler’s result, other constants appear in these ratio-sum; best possible es-

timates are given in all cases. The generalizations of these results to more
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general polygons, polyhedra and polytopes (higher dimensional relatives of

polygons and polyhedra) will then be presented, followed by historical and

other comments.

Ratio-sums for simplices

For d ≥ 2, let T d denote the d-dimensional simplex in Euclidean d-space Ed,

with vertices A− i, 0 ≤ i ≤ d. Thus T d can be interpreted as the convex hull

of d + 1 points of the Euclidean d-space Ed which are not all contained in a

hyperplane of smaller dimension. A good model to illustrate the concept and

the following arguments is given by the d-simplex with vertices at the origin

and at the unit points of a standard basis of Ed. For notational convenience

we shall occasionally use Ad+1 = A0.

We start by describing the setting of the results. Let Q be a pint of Ed,

and Fi the facet (that is, the (d− 1)-dimensional face) of T d that is opposite

Ai. Let Bi be the point of intersection of the line (the “cevian”) through

Ai and Q with the hyperplane Hi that contains Fi. For the defintions, and

some of the results, the point Q need not be in the interior of T d; the only

overall restriction on Q is that all points Bi must be well-defined, and that

the denominators in the various fractions be non-zero. This condition will

be assumed throughout, and will not be repeated in the reformulation of

our results. We shall be interested in various ratios involving the lengths

ai = ‖Ai − Q‖, bi = ‖Q − Bi‖, qi = ‖Ai − Bi‖ of the segments AiQ, QBi,

AiBi. As already mentioned, the lengths in question are to be taken as

signed lengths; since we shall always consider ratios of collinear segments,

the scale of measurement and the direction chosen as positive on each line

are irrelevant. For d = 2 one illustration of the possibilities is indicated in

Figure 1, and another in Figure 2.
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Figure 2: Another illustration of parts (i), (ii), (iv) and (vi) of Theorem 1.

Parts (iii) and (v) are not applicable to this example since q2/b2 < 0

To begin with, we are interested in the six ratio sums defined as follows:

ρ(b, q) = Σibi/qi; ρ(a, q)= Σiai/qi;

ρ(q, b) = Σiqi/bi; ρ(q, a)= Σiqi/ai;

ρ(a, b) = Σiai/bi; ρ(b, a)= Σibi/ai;

where each sum is over all i, 0 ≤ i ≤ d. We shall prove the following results.

Theorem 1 With the above notation the following statements are valid for

all Q:

(i) ρ(b, q) = 1.

(ii) ρ(a, q) = d.
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(iii) If qi/bi > 0 for all i, then ρ(q, b) ≥ (d + 1)2; equality holds if and only

if Q is the centroid of T d.

(iv) If qi/ai > 0 for all i, then ρ(q, a) ≥ (d + 1)2; equality holds if and only

if Q is the centroid of T d.

(v) If qi/bi > 0 for all i, then ρ(a, b) ≥ d(d + 1); equality holds if and only

if Q is the centroid of T d.

(vi) If qi/ai > 0 for all i, then ρ(b, a) ≥ (d+1)/d; equality holds if and only

if Q is the centroid of T d.

Before we turn to the proofs, we recall two very useful lemmas.

Let T d be a d-simplex with vertices Ai, 0 ≤ i ≤ d, and let Sd denote the

simplex with vertices Q, A1, A2, · · · , Ad. Then, denoting by V (T ) the signed

volume of the simplex T , we have:

Lemma 1 ‖Q− B0‖/‖A0 − B0‖ = b0/q0 = V (Sd)/V (T d).

This selfevident fact, which was called the “volume principle” in [11], has

been used without a special name by other authors (see, for example, [3, p.

131] for d = 3). In case d = 2, it has been called the “area principle” in [10]

and other publications, and it has been used starting at least two centuries

ago.

A second well-known tool is the elementary

Lemma 2 x + 1/x ≥ 2 for all x > 0, with equality if and only if x = 1.

We shall frequently apply this lemma in the form 1/x ≥ 2− x.

Proof of Theorem 1. We shall give here proofs for only the first three

parts of Theorem 1, to serve as warm-up for the generalizations presented in

Theorem 2.

The result of part (i) follows at once from Lemma 1, on noticing that the

signed volumes of the simplices with common apex Q that are spanned by
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the d + 1 facets of T d add up precisely to the signed volume of T d. For part

(ii) it is enough to note that

ρ(a, q) =
∑

i

ai/qi =
∑

i

(1− bi/qi)

= (d + 1)−
∑

i

bi/qi = d + 1− ρ(b, q) = d + 1− 1 = d.

For part (iii), using Lemma 2, we have

ρ(q, b)/(d + 1) =
∑

i

qi/ ((d + 1)bi) ≥ 2(d + 1)−
∑

i

((d + 1)bi) /qi

= 2(d + 1)− (d + 1)ρ(b, q) = d + 1,

which is equivalent to the inequality of (iii). Equality holds if and only if

((d + 1)bi) /qi = 1 for every i, which is a characterization of Q as the centroid

of T d. �

Further generalizations. The role that the simplex T d plays in the above

theorems will become clearer through the considerations of the generaliza-

tions of Theorem 1. For their formulation it is convenient to introduce ap-

propriate notation.

Let P denote a fixed polytope of dimension d in Euclidean d-space Ed.

It is simplest to think of P as a convex polytope, that is, as a generalization

of convex polygons in the plane, and convex solids in 3-space — these could

be called polytopes of dimension d = 2 or 3. However, the restriction to

convex polytopes is in no way necessary. For d = 2 and d = 3 we can

admit polygons and polyhedra in the generality described in [8] and [9],

that is, selfintersecting polygons, and selfintersecting polyhedra with possibly

selfintersecting faces. For d ≥ 4 we admit the obvious generalizations of these

kinds of polygons and polyhedra. We shall use the term “polytope” for all

dimensions d ≥ 2.

We impose the following restrictions on the polytopes considered here.

The polytopes must be orientable, and the d-polytopes and all their facets

must have non-zero content (volume in dimension d or d − 1, respectively).
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The content of a d-polytope P will be denoted by V (P ). The d-pyramid

determined by a (d− 1)-polytope F and point X will be denoted F (X).

Polytopes satisfying these conditions shall be called star-like. The tradi-

tional Kepler-Poinsot polyhedra — that is, the non-convex analogues of the

Platonic regularsolids — are star-like both in our sense, and visually. So are

many (but not all) of the uniform polyhedra presented in [4], and beautifully

illustrated by photos of models in [19]. Many other examples appear in [8]

and [9].

Let P be a star-like d-polytope. The f facets of P are labeled F1, F2, . . . , Ff

in an arbitrary order. Let Aj, 1 ≤ j ≤ f , be a collection of points of Ed such

that for suitable points Bj, with Bj in the hyperplane determined by Fj, the

line Lj = AjBj is well defined, intersects Fj only in Bj, and all lines Lj pass

through a common point Q.

In analogy to the notation in Section 2, we put:

ρ(b, q; W ) = Σjwjbj/qj; ρ(q, b; W ) = Σjqj/(wjbj);

ρ(a, q; W ) = Σjwjaj/qj; ρ(q, a; W )= Σjqj/(wjaj);

ρ(a, b; W ) = Σjwjaj/(wjbj); ρ(b, a; W )= Σjbj/(wjaj);

where W = (w1, w2, . . . , wf) is an ordered f -tuple of suitable weights specified

below; these weights depend on P and the points Aj, but are independent

of Q. All summations are for j = 1, 2, . . . , f . In all parts of Theorem 2 it

is understood that P is a star-like d-polytope with f facets, the points Q

and Aj satisfy the above condition, and the weights W are given by wj =

V (Fj(Aj)) /V (P ). We abbreviate w = Σjwj and w∗ = Σj1/wj. See Figure

3 for an illustration of the notation.

Theorem 2 With the above notation the following statements are valid:

(i) ρ(b, q; W ) = 1.

(ii) ρ(a, q; W ) = w − 1.

(iii) If qj/bj > 0 and wj > 0 for all j, then ρ(q, b; W ) ≥ w(2f−1). Equality

holds if and only if qj/(wjbj) = w for all j = 1, 2, . . . , f .
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(iv) If qj/aj > 0 and wj > 0 for all j, then ρ(q, a; W ) ≥ f 2/(w − 1), with

equality if and only if qj/(wjaj) = f/(w − 1) for all j = 1, 2, . . . , f .

(v) If qj/bj > 0 and wj > 0 for all j, then ρ(a, b; W ) ≥ w(2f − w) − w∗,

with equality if and only if qj/(wjbj) = w for all j = 1, 2, . . . , f .

(vi) If qj/aj > 0 and wj > 0 for all j, then ρ(b, a; W ) ≥ f 2/(w − 1) − w∗,

with equality if and only if qj/(wjaj) = f/(w− 1) for all j = 1, 2, . . . f .

Proof of Theorem 2. For part (i) we note that an easy generaliza-

tion of the “volume principle” shows that bj/qj = V (Fj(Q)) /V (Fj(Aj)).

Hence we have: ρ(b, q; W ) = Σjwjbj/qj = ΣjwjV (Fj(Q)) /V (Fj(Aj)) =

ΣjV (Fj(Q)) /V (P ) = 1, since the sum of the volumes of the pyramids with

apex Q equals the volume of P .

For part (ii), in analogy to the above and using Theorem 1(i), we have

ρ(A, q; W )

=
∑

j

wjaj/qj =
∑

j

wj(1− bj/qj)

=
∑

j

wj −
∑

j

wjV (Fj(Q)) /V (Fj(Aj)) = (
∑

j

wj)− 1 = w − 1.

For part (iii), in analogy to the proof of Theorem 1(iii), we have

ρ(q, b; W )/w =
∑

j

qj/(wwjbj) ≥
∑

j

(2− wwjbj/qj)

=
∑

j

2− w
∑

j

wjbj/qj = 2f − w.

The equality criterion follows from Lemma 2.

For part (iv) we have

(w − 1)ρ(q, a; W )/f

=
∑

j

(w − 1)qZj/(fw − jaj) ≥
∑

j

(2− fwjaj/ ((w − 1)qj)) =

=
∑

j

2− (f
∑

j

wjaj/qj)/(w − 1) = 2f − f(w − 1)/(w − 1) = f,
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Figure 3: An example of the situation covered by Theorem 2. As

is easily verified, in this example the weights are given by W =

(31/67, 37/67, 36/67, 30/67), hence w = 2
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which is equivalent to the claim. The equality condition is again a conse-

quence of Lemma 2.

For part (v), in analogy to the above, and using Lemma 2 and part (i) of

the theorem, we have

ρ(a, b; W )

=
∑

j

aj/(wjbj) =
∑

j

qj/(wjbj)−
∑

j

1/wj

= w
∑

j

qj/(wwjbj)−
∑

j

1/wj

≥ w
∑

j

(2− wwjbj/qj)− w∗ = 2wf ≥ V w2

∑

j

wjbj/qj − w∗

= 2wf − w2 − w∗.

Equality holds if and only if it holds in part (iii) of the theorem.

For part (vi), in analogy to the above, and using part (iv) of the theorem:

ρ(b, a; W )

=
∑

j

bj/(wjaj) =
∑

j

qj/(wjaj)−
∑

j

1/wj

= (f/(w − 1))
∑

j

(w − 1)qj/(fwjaj)− w∗

≥ (f/(w − 1))

(

∑

j

2−
∑

j

fwjaj/ ((w − 1)qj)

)

− w∗

= 2f 2/(w − 1)−
(

f 2/(w − 1)2
)

∑

j

wjaj/qj − w∗

= 2f 2/(w − 1)−
(

f 2/(w − 1)2
)

(w − 1)− w∗ = f 2/(w − 1)− w∗,

with equality if and only if equality holds in part (iv).

This completes the proof of all parts of Theorem 2. �
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Historical and other comments.

(i) For d = 2 it is clear that Theorem 1(i) contains Euler’s result. Euler’s

theorem has been rediscovered by several authors; first among them is

Gergonne [6]. Very few of these mention Euler — even the authorita-

tive work of Zacharias [21] mentions only Gergonne. Surprisingly, the

detailed survey of pre-20th century geometry by Simon [18] (which has

references to well over 2000 authors!) does not mention the result at

all. Without any attribution, Euler’s result appears in [1, p. 162]. The

extension to higher dimensions is also not new. For d = 3 the earliest

mention we are aware of is in [6]. Parts (i) and (ii) of Theorems 1

appear in [2, page 115] and [3, page 131]. For general d, our Theorem

1(i) appears in [13] and probably in several other places; it was also

mentioned in a letter from Prof. H. Gülicher in 1998.

(ii) We are not aware of any mention of parts (iii) to (vi) of Theorem 1 in

the literature. The fact that equality holds in these cases for Q at the

centroid is obvious. In each of them, the characterization of Q as the

centroid in case of equality is due to Klamkin [14].

(iii) It is easy to verify that the theorems of Section 3 reduce to the results

of Section 2 in the special case that P is the d-simplex T d and the

points Ai are the vertices of T d. However, even if P is T d the results

of Section 3 are more general since they do not restrict the points Ai

to be vertices of T d.

(iv) Parts (i) and (ii) of Theorems 1 and 2 are somewhat analogous to

the classical theorems of Ceva and Menelaus, and the new results on

selftransversality (see [11]). These earlier results deal with product of

ratios, while here we are concerned with sums of ratios. However, our

other results seem not to have any multiplicative analogues.

(v) The ratios aj/bj for cevians of a triangle appear in Euler’s paper [5], in
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the following result, formulated in the notation of Section 1:

A1Q/QB1 + A2Q/QB2 + A3Q/QB3 + 2

= (A1Q/QB1) · (A2Q/QB2) · (A2Q/QB2).
(∗∗)

This nonlinear relation seems to have been largely forgotten. it has

been established in a simple way and its validity extended in the recent

paper [17]. An analogue of this result is due to Euler [5]; it deals with

ratios of lengths of the segments into which each side of a triangle is

partitioned by parallels to the other sides. It was independently found

by Gülicher [12].

(vi) The idea to use weights attached to the ratios originated with Shephard

[16]; he kindly sent a preprint of this paper to one of us. For polygons

in the plane Shephard establishes in [16] a restricted version of part (i)

of our Theorem 2. Associating weights to ratios was also used in [7],

for ratio-sums of a slightly different kind.

(vii) Part (iii) of Theorem 1, as well as some results found in the literature,

can be generalized so that the “cevians” are arbitrary segments, that

need not have a common point. Let T d, Ai, Q, Fi and Hi have the

same meaning as in the discussion leading to Theorem 1. Let Bi be an

arbitrary point of Hi, and let Ci denote the point of Hi such that the

segment QCi is parallel to the segment AiBi. Figure 4 illustrates a case

with d = 2. Let qi and ci denote the signed lengths of the segments

AiBi and QCi, let f and fi denote the d-dimensional volumes of T d and

of the simplices with basis Fi, and let u and v be non-negative reals.

Using the obvious generalization of the volume principle we have

∑

i

qi/(uci + vqi) =
∑

i

1/ (u(ci/qi) + v) =
∑

i

1/ (u(fi/f) + v)

≥ (d + 1)2/
∑

i

(u(fi/f) + v)

= (d + 1)2/ (u + v(d + 1)) .
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Figure 4: An illustration of the content and notation of comment (vii)

Here we used the fact that the arithmetic mean is greater than or

equal to the harmonic mean, and that
∑

i fi/f = 1. One could also

add the less interesting generalization of part (i) of Theorem 1, namely
∑

i(uci +vqi)/qi = u+v(d+1). The special cse d = 3, with Bi the foot

of the altitude from Ai, and Q the incenter appears in [20] and [15]. In

the former, u = 3 and v = 1, so that the lower bound is 16/7; Murray

Klamkin was one of the solvers of [20]. In [15], v = 0 and u = 1, hence

the lower bound is 16.
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