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1.  Introduction.  In the second part of this paper [G1] we considered the unjustifiably low reputation of antiprisms, and provided illustrations of the different approaches to these polyhedra.  This part was devoted to the case of 3–dimensional polyhedra; here we shall deal with higher dimensions, mostly with 4-dimensional convex antiprisms. In order to make this part more selfcontained, here is the definition we have adopted:

For  d ≥ 3, a convex d-antiprism  P  with bases  P1  and  P2  is the convex hull of convex (d-1)-polytopes  P1  and P2  provided:

(i)
P1  and  P2  are situated in distinct parallel hyperplanes, and are dual to each other under a mapping  f; 

(ii)
the only other facets (that is, (d-1)-dimensional faces) of  P  are the convex hulls of faces  F1  and  F2  of  P1  and P2,  which correspond to each other under  f.

For this definition see [CP, p. 66] or Broadie [B].  

In the next section we shall first formulate our principal result, that every polyhedron (that is, 3-polytope) is isomorphic (has the same combinatorial type) to one of the bases of a 4-dimensional antiprism.  In Sections 3 and 4 we shall present the ingredients of the proof together with appropriate examples and some historical notes.  Section 5 will deal with various comments and open problems.

2.  The main theorem.  In Proposition 1 of [G1] we have seen that every polygon can be one of the bases of a 3-dimensional antiprism, but that one cannot insist that the other basis be a polar of the first one.  Examples are given in [G1].  However, it is not known whether every 3-dimensional convex polyhedron can serve as a basis of a 4-dimensional antiprism.  On the other hand, a negative answer is clear if one insists that the two bases be polars of each other.  To see examples, one could modify the 2-dimensional ones from [G1], but it is more useful to recall the following result of Broadie [B]:

Theorem 1.  A convex (d-1)-polytope P and a polar  P*  of  P  can be the bases of a d–antiprism if and only P has the following property:

(*)
There exists a point  O  such that for every face  F  (of any dimension) of  P  the orthogonal projection of  O  into the affine hull of  F  is in the relative interior of  F  itself.

As an illustration, consider the octahedron shown in Figure 1, obtained by cutting off two edges of a cube in a suitable way.
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Figure 1.  This polyhedron has no polar such that the two could be the bases of a 4-antiprism.  This follows from Broadie's criterion, since no point can serve as  O:  The slanted face at left requires  O  to be near the top, while the other slanted face requires it to be near the bottom.

On the other hand, the polyhedron in Figure 1 is a hexagonal prism; hence it is isomorphic to the regular hexagonal prism, which does satisfy Broadie's criterion.  This leads to the question:

Problem 1.  Is every (d-1)-polytope isomorphic to a polytope satisfying condition (*), and therefore can be used together with a suitable polar as bases of a d-antiprism?

As mentioned above, we know that the answer is affirmative for d = 3, and the main result of this note is that Problem 1 has an  affirmative solution for  d = 4  as well.

Theorem 2.  Every 3-polytope  P  is isomorphic to a polytope  Q  such that  Q  and a suitable polar  Q^ of  Q are bases of a 4–antiprism.

A proof of Theorem 2 will be given in the next section, after the introduction of some concepts needed to formulate the result on which the proof is based.

3.  Midscribed polyhedra.  A convex polyhedron  P  is said to be midscribed about a sphere  S  provided every edge of  P  is tangent to  S.  In such a situation we shall also say that  S  is the midsphere of  P.  The point at which an edge touched the midsphere is called the tangency point of that edge.

It is immediate that if a polyhedron  P  has a midsphere  S,  then each facet  F  (that is, 2-dimensional face) of  P  intersects  S  in a circle, which in the inscribed circle  C  of  F.  In other words, each facet  F  of  P  has an incircle  C, and  C  has all edges of  F  as tangents at the tangency points of the edges.  This implies that the incircles of adjacent facets meet are the tangency point of the edge common to these facets.  Therefore the incircles of all facets of  P  form a circle packing.  In general, a circle packing is a collection of circles (in our case, in the facets of a polyhedron) that have pairwise one common point if they correspond to adjacent facets.  Note, however, that the facets of a polyhedron may have incircles that form a circle packing without the polyhedron having a midsphere.  An example is shown in Figure 2.

A polyhedron is said to be of midscribable type if and only if it is isomorphic to a midscribable polyhedron.  For our proof we need the following surprising result: every convex polyhedron is of midscribable type.  More specifically, we have:

Theorem 3.  For every polyhedron  P  there is a polyhedron  Q  isomorphic to  P  that is midscribed to a sphere  S  and is such that the centroid (center of gravity) of the tangency points coincides with the center of  S.  This polyhedron  Q  is determined uniquely in the sense that all polyhedra satisfying the same conditions are congruent to  Q.
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Figure 2.  This polyhedron is formed as the union of two cube-like polyhedra, each of which has one facet smaller that the other, and the remaining four facets are trapezoids of appropriate shape, so that each facet has an incircle.  Moreover, these incircles form a circle packing, since they touch in single points of appropriate edges.  On the other hand, it is obvious that the polyhedron has no midsphere.

We shall not give a proof of Theorem 3.  Instead, in Section 4 details of its history will be presented, together with references to ways of establishing its validity.

Combining theorems 1 and 3 the proof of Theorem 2 is very simple.  Given a polyhedron  P,  let  Q  be the polyhedron isomorphic to  P  and midscribed to a sphere  S  with center  O.  Then perpendiculars from  O  to (the planes of) the facets of  Q  are the centers of the incircles of the facets, hence belong to the relative interiors of the facets.  On the other hand, perpendiculars to (the lines that carry) the edges of  Q  are the tangency points of the edges, therefore in the relative interior of the edges.  It follows that all the conditions of Theorem 1 are satisfied, and hence  Q  and (a translate of) the polar  Q^  of  Q  with respect to  S  are the bases of a 4-dimensional antiprism.  This completes the proof of Theorem 2.

4.  Circle packings and midscribable polyhedra.  While a direct proof of Theorem 1 is presented in Broadie [B], no analogously simple reference for Theorem 3 seems to exist.  Instead, there are many papers which need to be interpreted and combined appropriately in order to get the result.  An account of the relevant works will be given here; for simplicity, it is convenient to introduce and additional concept.

Let  G  be a graph.  We say that  G  has a representation by a circle packing in the plane or on a sphere if there is a collection  C  of circles with disjoint interiors, each circle corresponding to a vertex of  G,  and two circles having a common point if and only if the corresponding vertices of  G  determine an edge of  G.
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A much deeper result is:

Proposition 2.  Every convex 3-polytope  P  is combinatorially equivalent to a convex polytope  Q  such that  Q  is a basis for a 4-antiprism.

Proof.  Use for  Q  the polyhedron obtained in Theorem 2.8.11 of [Mohar&Thomassen], and the comment following it (page 63). See also Theorem 4.13 of [Ziegler]. This is a result of [Schramm], itself a relative of the Koebe-Andreev-Thurston theorem.

Note.  The particular  Q  used above is in a sense analogous to the regular polygons.  It is uniquely determined (up to similarity) for every  P, and the other basis Q' can be chosen as a polar of  Q.

Problem 5.  Can every convex 3-polytope  P  be the basis for a 4-antiprism?

Problem 6.  If a convex 3-polytope  P  is the basis of a 4-antiprism, can the other basis  P'  be chosen as a polar of  P?

All convex 3-antiprisms with combinatorially equivalent bases are isotopic.

Problem 7.  Are all convex 4-antiprisms with combinatorially equivalent bases isotopic?

Problem 8.  What about  d-antiprisms for  d ≥ 5? 

Problem 9.  What about higher-dimensional analogues of the Koebe-Andreev-Thurston theorem?
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Berele and Goldman mention prisms (under the name "cylindrical solids", p. 181) but do not mention antiprisms.

A. Berele and J. Goldman, Geometry: Theorems and Constructions. Prentice Hall, Upper Saddle River, NJ, 2001.

Webster's Third New International Dictionary:

archimedean solid  n. usu cap A :  one of 13 possible solids each of which has plane faces that are all regular polygons though not all of the polygons are of the same species and each of which has all its polyhedral angles equal

prism n  -s [LL prisma  ... ] 1a : a polyhedron having two faces that are polygons in parallel planes while the other faces are parallelograms

Merriam-Webster's Collegiate Dictionary (tenth edition): prism: Date: 1570

a polyhedron with two polygonal faces lying in parallel planes and with the other faces parallelograms

prismatoid: Date: circa 1890

: a polyhedron that has all of its vertices in two parallel planes

From: "Earliest known uses of some words of mathematics" (Jeff Miller)
PRISM is found in English in Sir Henry Billingsley's 1570 translation of Euclid's Elements (OED2). 

PRISMATOID (as a geometric figure) occurs in the title Das Prismatoid, by Th. Wittstein (Hannover, 1860) [Tom Foregger]. 

Prismatoid is found in English in 1881 in Metrical geometry. An elementary treatise on mensuration by George Bruce Halsted: "XXXIV. A prismatoid is a polyhedron whose bases are any two polygons in parallel planes, and whose lateral faces are determined by so joining the vertices of these bases that each line in order forms a triangle with the preceding line and one side of either base. REMARK. This definition is more general than XXXIII, and allows dihedral angles to be concave or convex, though neither base contain a reentrant angle. Thus, BB' might have been joined instead of A'C" [University of Michigan Digital Library]. 

"Antiprism" does not appear.  The above definition covers antiprisms, but includes some other prismatoids (in my sense) as well: the "one side of either base" does not require the bases to alternate.

Kepler (1622)

Defines neither prisms nor antiprisms, but mentions them in the enumeration of Archimedean solids –– only to dismiss them, as being excluded by his definition IX

Definition IX: Perfect to a lesser degree [than the regular polyhedra] are those with  regular planes [faces], with vertices all on a sphere, and equal to each other; but the planes are of different kinds, and moreover each kind has to be in such number as in one of the most perfect figures; that is, no less than four, since this is the smallest number of planes that delimit a solid figure.

It is possible that because of this definition Kepler excluded the pseudorhombi-cuboctahedron (the 14th "Archimedean" polyhedron) from his list.  Indeed, when presenting the rhombicuboctahedron he shows that he is aware of the different roles played by some of the quadrangles. He says: " ... there are 8 triangles and 18 (that is, 12 and 6) quadrangles".  For the pseudorhombicuboctahedron he would have to say  " ... 18 (that is, 8 + 4 + 4 + 2)...".  He makes similar comments when discussing the snub cube and the snub dodecahedron.

On a slightly different topic, Kepler mentions (following the discussion of the regular star-polyhedra) that one can fit together (along edges) polygons {8/3} or {10/3}. However, he says, this leaves "holes" and thus does not create polyhedra.  What is remarkable by its absence is the fact that when discussing Archimedean polyhedra Kepler does not return to these star polygons.  He might have noticed that the "holes" can be closed by equilateral triangles, thus creating polyhedra that would satisfy his definition of "Archimedean", with selfintersections no worse than his star polyhedra.  In fact, the list of possibilities is quite long, but has not been fully described till Coxeter et al. in 1953.

In describing the regular star polyhedra, Kepler says that their relation to the dodecahedron and icosahedron is very close; for example, the dodecahedron can be seen as truncation of one of the starshaped polyhedra (and the icosahedron of the other).

J. Ozanam, 1691:  Le PRISME est un Solide terminé par plus de quatre Plans, dont il y en a deux opposez, qui sont semblables, égaux & paralleles, & les autres sont parallelogrammes. (page 119)

*********************************************************

Are prisms and antiprisms really boring ? (Part 1)

1.  Introduction.  Everybody has heard of solids called prisms; many – but not all – have also heard of antiprisms.  The definitions offered by different authors vary somewhat, but these solids are invariably presented as being rather dull and pedestrian.  It seems that many writers feel that it is their duty to mention them for sake of completeness, but their heart and interests are really not in it.  Some writers fail to mention them when they should: prisms and antiprisms satisfy the definitions of certain types of polyhedra they discus, but their existence is ignored.  The present note is meant to show that the presumed triviality of prisms and antiprisms is a bum rap: The ideas involved in prisms and antiprisms lead to many unusual polyhedra, and touch on several very modern mathematical questions.  Some of these are still open problems.  In the present first part we shall concentrate on prisms, to be followed by a discussion of antiprisms in Part 2, to appear in a future issue.  In Section 2 we shall present the main results of the note, while Section 3 contains historical remarks, references to the literature, and a proposed solution to a puzzling fact concerning Kepler's enumeration of the Archimedean polyhedra.

2.  Prisms.  According to various sources ([M], several encyclopedias), prisms appear in some generality for the first time in 1570, in Sir Henry Billingsley's 1570 translation of Euclid's Elements.  Soon thereafter several slightly different interpretations of the word appear; these continue to be used to this day.  On the one hand, a customary statement is that a prism is "a polyhedron having two faces that are polygons in parallel planes while the other faces are parallelograms"; from this follows that the two polygons are translates of each other.  On the other hand, many writers restrict the meaning to the case in which the two polygons are regular, and the parallelograms are squares; other call this special case "regular prisms".  Even this restricted meaning allows for infinitely many kinds of "regular prisms", since every regular n-gon can be used.  The regular prisms satisfy the conditions usually imposed on polyhedra called "Archimedean"; nevertheless, most authors do not include them among the Archimedean polyhedra, stating instead that "there are 13 Archimedean polyhedra".  Details about this phenomenon and its history are presented in Section 3.  Here it should be sufficient to note that this is one of the needless slurs on the role of prisms.

More interest about prisms can be generated if we ask ourselves how could one define combinatorially (as opposed to geometrically) a class of polyhedra that would deserve to be called "prisms".  It is reasonably clear that the best one could say combinatorially is that a combinatorial n-sided prism is a complex that consists of two polygons with the same number  n  of sides, together with  n  quadrangles, such that at each vertex two quadrangles and one n-gon meet.  In any geometric realization of a combinatorial prism the two  n-gons, and each of the  n  quadrangles must be planar.  If we now ask what shapes can the geometric realizations of a combinatorial prism have, we see that there are many possibilities.  Two unusual geometric realizations of the combinatorial hexagonal prism are shown in Figure 1.

It should be explicitly noted that we do not restrict attention to convex polyhedra.  Just as the well-known regular star-polyhedra of Kepler and Poinsot (see, for example, [Co], [C], [W]) have selfintersections of various kinds, we consider here "polyhedra" of such kinds.  Details of the specific definition would lead us to far to be presented here; they can be found in [G1], [G2] and, for abstract polytopes of all dimensions in [MS].

Every combinatorial prism is vertex-transitive; that is, all vertices are mutually equivalent under incidence-preserving automorphisms of the complex.  This is a consequence of the fact that the regular prisms is among the geometric realizations of all prisms.  Hence it is natural to ask about isogonal geometric realizations, that is, about such geometric prisms on which the group of geometric symmetries acts transitively on the vertices.  Somewhat unexpectedly, it turns out that combinatorial n-sided prisms admit, for each odd  n ≥ 3, several distinct isogonal realizations, while for each even  n ≥ 4  they admit a continuum of geometric realizations.

Examples for  n = 5  are shown in Figure 2, while the case of  n = 6  is illustrated in Figure 3.  It should be noted that the bases are hexagons in all parts of Figure 3.  The apparent triangles in the fourth column are hexagons in which adjacent pairs of vertices are represented by the same point –– thus establishing a continuous transition between the prisms in adjacent columns.  On the other hand, the apparent triangles in the rightmost column are hexagons of rotation number 2 –– each winds twice around the interior.  Again pairs of vertices are represented by single points, but in this case these are opposite vertices of the hexagon.  They also represent intermediate stages between adjacent prisms.
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Figure 1.
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Figure 3.

Figures 2 and 3 are taken from [G3], where additional illustrations are also provided.  In that paper the concept of prism is generalized to "prismatoid". A prismatoid is usually defined as a polyhedron having all its vertices in two parallel planes; thus they include, besides prisms, also antiprisms, which we shall discuss in Part 2.  As shown in [G3], even when restricted to isogonal ones, prismatoids exhibit an astounding variety of possible shapes, of many novel kinds.

In the case of a convex polytope  P  of any dimension, it is easy to define a prism with basis  P  as the convex hull of the union of  P  with a translate in a direction that is outside of the affine hull of  P.  This can also be put is a generalized combinatorial form, which includes the earlier definition of 3-dimensional combinatorial prisms.

A combinatorial 1-prism is any complex (abstract 1-polytope) consisting of two distinct symbols, interpreted as "vertices", together with the pair of these vertices, interpreted as an "edge".  For  d ≥ 2, a combinatorial  d-prism is a complex (an abstract  d‑polytope) whose facets are two abstract (d‑1)‑polytopes  P1  and  P2  isomorphic under a mapping  f,  together with all the combinatorial  (d‑1)‑prisms determined by facets of  P1  and P2  that correspond to each other under  f.

A geometric d-prism (generally shortened to d-prism) is the image of a combinatorial  d–prism in a Euclidean space, such that each k-dimensional combinatorial face has an image contained in a k-dimensional flat.  In traditional interpretation, P1 and P2 are usually assumed as situated in parallel flats and as translates of each other in a direction perpendicular to their plane, and the d-prism as being full-dimensional (that is, not contained in any flat of smaller dimension).

Thus, a 1-prism is represented by a segment and its two endpoints.  By induction, a  2-prism is a quadrangle –– in fact, any quadrangle is a 2-prism.  The geometric realizations of 3-prisms have been discussed above.  No specific results on  d-prisms for  d ≥ 4 seem to be known.  We have

Problem 1.  Is every d-prism isotopic to a traditional one?  

Problem 1 seems to have an affirmative answer for convex d-prisms, but even in this case no detailed proof seems to be available.  For general 3‑prisms the proof depends on the answer to the following open question:

Problem 2.  If two oriented n-gons have the same rotation number and corresponding edges are pairwise parallel in the same direction, are they isotopic through polygons with the same properties ?

We recall the "isotopic" means that one polygon can be changed continuously to the other, while keeping at all intermediate stages the properties mentioned.  Concerning rotation numbers see, for example, [GS].  For convex polygons Problem 2 has obviously an affirmative answer.  An affirmative answer for more general polygons would constitute a strengthening of the polygonal version of the Whitney-Graustein theorem (see, for example, [MY]), which asserts that two polygons with the same rotation number are isotopic under some natural restrictions.  (It is regrettable that the formulation in [MY] uses the term "winding number" which in the context of curves and polygons has a completely different meaning and is irrelevant to the result.)

Problem 3.  What are the conditions on isomorphic geometric (d-1)-polytopes P1 and P2  which make the construction of a d-prism possible?

3.  Remarks and history.  To illustrate the lack of serious consideration for prisms and antiprisms, here are some recent instances in otherwise rather nice and well-received texts.  In all cases, the only consideration would be of regular prisms, which are polyhedra that satisfy the customary definition of Archimedean solids (also called "semiregular" by some authors)  –– all faces are regular polygons, not all congruent, and all vertices are "the same". We shall discuss the meaning of the last part soon.

For example, prisms and antiprisms are not mentioned as belonging among the "semiregular polyhedra" although they should be since they are covered by the definition of given in [S].  In fact, antiprisms are not mentioned anywhere in this text.

In other texts, it is acknowledged that prisms and antiprisms should be listed among the Archimedean solids, but some ad hoc reasons are given for their exclusion.  In [K, p. 328] the "excuse" is: they do not contain four faces that are contained in the faces of a regular tetrahedron.  On the other hand, Cromwell [C, p. 157], quotes and accepts the "reason" Kepler [Ke] gave for exclusion of prisms and antiprisms (which he described but did not name). Here is the reasoning, adapted from [ADF, p. 101]:

Kepler bases the exclusion on his definition of Archimedean polyhedra, given by his definition IX  (bracketed words are mine):

"Definition IX: A congruence [polyhedron] is perfect, but to a lower degree [than the regular polyhedra], when the plane figures [faces] are regular and all the angles [vertices] lie on the same spherical surface and are similar [congruent] to one another, but the faces are of various kinds, though the number of each kind must be the same as the number of faces of one of the most perfect figures, that is, not less than four, which is the minimum number of planes to bound a solid figure."

Obviously, the last condition is not a natural one –– is seems to have been formulated just in order to exclude prisms and antiprisms.  As mentioned by Cromwell [C, p. 158], Kepler is inconsistent since he includes the snub polyhedra in his list of Archimedean ones although they do not satisfy this requirement (they have 32 and 80 triangles, respectively).  It seems that Kepler himself felt that this second part of definition IX is not satisfactory, so he gives somewhat later (see [ADF, p. 102] another reason for the exclusion of prisms and antiprisms, formulated to apply to the solids shown in one of his figures –– heptagonal prism and heptagonal antiprism:

"Note that I have excluded ... suchlike figures ... because only two heptagons are involved, and the figure formed is discus-shaped, like a plane, not globe-shaped, like a sphere."

One cannot escape the feeling that Kepler is working too hard to justify an arbitrary exclusion –– or, possibly, to obtain the "right" number 13 of Archimedean polyhedra, which was reported by Pappus (see [C, p. 156]).

It may well be that because of his Definition IX Kepler excluded the pseudorhombi-cuboctahedron (the 14th "Archimedean" polyhedron) from his list.  In an earlier work (see [C, p.152]) Kepler mentions 14 Archimedean solids he found.  In [Ke], this is reduced to the number 13 reported from antiquity.  Indeed, when presenting the rhombicuboctahedron he shows that he is aware of the different roles played by some of the quadrangles.  He says: " ... there are 8 triangles and 18 (that is, 12 and 6) quadrangles".  For the pseudorhombicuboctahedron he would have to say  " ... 18 (that is, 8 + 4 + 4 + 2)...", which is not compatible with Definition IX.  He makes similar comments when discussing the snub cube ("32, that is 20 and 12") and the snub dodecahedron ("80, that is 20 and 60").  Thus, although such considerations "legitimize" the snub cube, for the snub dodecahedron Cromwell's remark still applies.
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