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A configuration (pq, nk) is a family of p points and n lines,
such that each point is incident with (that is, belongs to) q of the
lines, and each of the lines is incident with k of the points.  If the
number of points and lines is not relevant, we say that such a con-
figuration is of type [q, k].  We shall mostly consider configurations
in the Euclidean plane; in some cases we shall take them to be in the
extended Euclidean plane.  By this we mean the plane obtained by
adding "ideal points" (also known as "points at infinity"), which are
representatives of families consisting of all lines parallel to one di-
rection.  This plane is one of the ways of representing the real pro-
jective plane. It is well known that every configuration in the ex-
tended plane is equivalent (by a projective transformation) to a con-
figuration in the Euclidean plane. The reason for the use of the ex-
tended Euclidean plane is that some configurations allow more
symmetric representations in it than in the Euclidean plane itself.

Configurations of type [3, 3] have been studied for at least
130 years, and much has been written about them.  Configurations of
type [4, 4] have been studied for some twenty years; most of the
known results are contained in [1], [3], [6], or can be traced through
these papers. Some special cases of configurations of types [3, 4]
and [4, 3] have also been investigated; see [4] for details and refer-
ences.

It is easy to show that for every q ≥ 3, k ≥ 3 there exists con-
figurations of type [q, k].  Indeed, starting with the lattice of integer
points in the q-dimensional Euclidean space, consider a "box" of
points each coordinate of which is an integer ≥ 0 and < k, together



with lines through these points in the directions of the coordinate
axes. Then we have a configuration ((kq)q, (q kq–1)k) in the q-space;
projecting it into a plane we obtain the desire configuration of type
[q, k].  There are several other approaches to the construction of such
configurations.  The first to describe a (rather complicated) method
was S. Kantor in 1879 (see [9]).  However, all these constructions
yield configurations with rather large numbers of points and lines,
and their representation in the plane is quite jumbled.  In fact, I have
not seen any of these actually shown in a paper of book.

The only work which presents diagrams of some configura-
tions of types [q, k] with q ≥ 4 ≤ k, max{q,k} ≥ 5 is the recent article
[2]. The purpose of the present note is to show some "small" exam-
ples of such configurations. I hope that this may inspire others to
find more and better examples, and ways of generating other families
of such configurations.  Some data are provided in Table 1.

Figure 1 shows the by now well-known configuration (214),
first presented in [8].  (For configurations of type [k, k] it is custom-
ary to shorten the symbol (nk, nk) to (nk).)  It can be considered a
polycyclic configuration in the terminology of [3], in that its points
are situated at the vertices of regular polygons; in this case these are
three heptagons. A notation for polycyclic configurations (n4) is ex-
plained in [7].

        k           4                   5                   6                   7        
q
4 (214) (454,365) (544,366) (634,367)
5 (365,454) (505) (545,456) (1265,907)
6 (366,544) (456,545) (3246)
7 (367,634) (907,1265)

Table 1. The smallest known configurations of type [q, k] for the
indicated values of q and k.  No reasonably small configurations of
types not listed are known. The configurations in bold-face are con-
jectured to be smallest possible.  Blank spaces mean I have no idea
how to find a reasonably small configuration.



There are many different kinds of polycyclic configurations
of type [4, 4]; some are important as starting points of "small" con-
figurations of type [q, k] with larger values of the parameters.  For
example (see Figure 2) starting with a polycyclic configuration (364)
with points at the vertices of four regular 9-gons, by adding the nine
lines of mirror symmetry one obtains a configuration (365,454).
Taking its polar yields a configuration (454, 365).  A different con-
figuration (454, 365) is obtained from the one in Figure 2 by adding
the nine points at infinity.

Analogous constructions can be performed on the configura-
tion in Figure 3. However, in this case there are additional collineari-
ties among the points of the configuration. This allow us to add two
families of nine lines each, and yields the configuration (366,544),
shown in Figure 4.  Adding to this the nine points at infinity yields a
configuration (456,545). Adding instead the nine lines of mirror
symmetry results in a configuration (367,634).  Polars yield configu-
rations (544, 366), (545, 456) and (634, 367), respectively.  From two
copies of (367,634) rotated (with respect to the common center) so

Figure 1. A configuration (214), with symbol 7#(3,2,1,3,2,1).



that the mirror lines of each copy are parallel to the non-mirror lines
of the other, and then adding the 18 points at infinity, gives a con-
figuration (907, 1265). Taking six copies of (545, 456) suitably
placed, and connecting them by 54 lines, yields a configuration
(3246). (Note that 324 = 6 × 54 = 54 + 6 × 45.) The last two con-
figurations are too large to present intelligibly in the available format,
although there is no problem in drawing them in larger size.

In Figure 5 is shown a configuration (404). Adding the ten
lines of mirror symmetry yields a configuration (405, 504).  Adding
instead the ten points at infinity gives a configuration (504, 405).  Fi-
nally, adding both the lines of symmetry and the points at infinity
results in a configuration (505).

Figure 2. A configuration (364).  In the notation of [7], this is the
configuration 9#(4,3,1,3,1,3,2,1).



Two general remarks.  First, all the configurations shown
here are "genuine", that is, the incidences between point and lines that
seem to be indicated by the diagrams are actual incidences.  This can
be confirmed by elementary calculations.  Second, the constructions
indicated can be performed on many other configurations (n4), thus
leading to infinitely many configurations of each of types [4, 5],
[5, 4], [4, 6], [6, 4], [4, 7], [7, 4], [5, 5], [5, 6], [6, 5], and [6, 6].  Many
of these are reasonably small; the ones presented are conjectured to
be the smallest, as indicated in Table 1.

There are many unsolved problems related to the present
topic.  On the one hand, one may inquire whether there are

Figure 3.  Another configuration (364).  In the notation of [7], this is
the configuration 9#(4,2,1,4,3,1,2,3).



possibilities of construction of reasonably small configurations of
type [q, k] with q and k beyond the range of Table 1.  On the other
hand, if one allows configurations in which "lines" are replaced by
"pseudolines" (that is, curves that behave globally, and pairwise
among themselves, like lines), then smaller configurations of the
types considered here become possible. As an example, in [5] a
pseudoline configuration (1806) is shown.  As another example, Fig-
ure 6 shows a (224) configurations of pseudolines. It has been con-
jectured (see [6], [7]) that there is no configuration (224) of points
and lines.

Figure 4. A configuration (366,544), obtained by adding two families
of nine lines each to the configuration in Figure 3.



Similar question may be posed for combinatorial configura-
tions, in which "points" are just symbols, and "lines" are collections
of symbols.  It appears that for every q and k, there are combinatorial
configurations that are smaller than the geometric ones considered
here.
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Figure 6.  A (224) configuration of pseudolines. (It barely fails to be
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