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1.  Introduction.  In the first part of this paper [5] we considered
the unjustifiably low reputation of prisms.  In the same spirit we
shall in this note attempt to show that antiprisms are not only inter-
esting, but in fact present many challenges and lead to seemingly
very hard problems.  As in the case of prisms, "antiprisms" mean
different things to different people.  We shall start by surveying the
current usage.  Due to the length of the note, it will be presented in
two parts.  The present installment is mainly devoted to the case of
3-dimensional antiprisms, while the next one will deal with combi-
natorial antiprisms and their geometric realizations, and with
higher dimensions.

2. The traditional approach.  Many authors (in print, or on the
Web) define prisms and antiprisms only in the context of Ar-
chimedean polyhedra (variously called also semiregular or uni-
form), more or less as follows (see, for example, [3, p. 85]): "A
prism is formed from two n-sided [regular] polygons separated by
a ring of n squares. An antiprism also contains two n-sided regular
polygons, ... separated by a ring of 2n equilateral triangles."  This
is equivalent to saying –– as many other authors do –– that an anti-
prism results from a prism by twisting one of the n-gons by 180/n
degrees, and adjusting the distance between the two so that the  2n
triangles that result from the  n  squares become equilateral.  This
is illustrated in Figure 1 for  3 ≤ n ≤ 6.  In slightly mere general
meaning, instead of being equilateral, the triangles of the ring are
allowed to be isosceles.

Somewhat more general antiprisms are discussed by Aravind in
[1]. Here the two n-gons are assumed only to be similar and situ-



ated so that the 2n mantle triangles are isosceles. An example is
shown in Figure 2.

A different extension of the concept appears in [3, p. 13].  "A
prism is formed from two congruent polygons lying in parallel
planes connected by a ring of rectangles.  An antiprism is similar
except that the connecting ring is composed of isosceles triangles."
However, it may well be that this definition admits more than was
intended: For most writers the notion of antiprism includes the al-
ternation of the bases of the triangles among the sides of the
n-gons.  As shown in Figure 3, this needs not be the case for
Cromwell's concept.

Prisms  (4.4.n)

Antiprisms  (3.3.3.n)

Figure 1. Examples of prisms and antiprisms. The 4-prism is better
known as the cube, and the 3-antiprism is the regular octahedron.

Figure 2. An example of a 4-antiprism in the sense of Aravind [1].



3.  New approaches.  In [5] we have seen that allowing more gen-
erality in the definition of prisms leads to more interesting polyhe-
dra.  One may expect that greater generality will be interesting in
the case of antiprisms as well.  On the other hand, it is quite obvi-
ous that any extension of the concept of antiprism to more general
polyhedra, or to higher-dimensional polytopes, cannot proceed
along the lines discussed above.  Fortunately, there is a way to de-
fine antiprismatic polyhedra in such a way that fruitful generaliza-
tions are possible.  Although we could again start by defining ab-
stract d-antiprisms, it seems more appropriate to start by restricting
attention to convex ones.

For  d ≥ 3, a convex d-antiprism  P  with bases  P1  and  P2  is the
convex hull of convex (d-1)-polytopes  P1  and P2  provided:

(i) P1  and P2  are situated in distinct parallel hyper-
planes, and are dual to each other under a mapping  f;

(ii) the only other facets (that is, (d-1)-dimensional
faces) of  P  are the convex hulls of faces  F1  and  F2  of  P1  and
P2,  which correspond to each other under  f.

For this definition see [4, p. 66]; it was adopted by Broadie [2].
Independently, a similar definition was proposed by Smith [6] in
the special case that  P1  and P2  are 3-dimensional tetrahedra.
Since polygons are selfdual, it is obvious that this definition in-
cludes the traditionally considered antiprisms, as well as the
Aravind concept, but not the one proposed by Cromwell.

Figure 3. A polyhedron that satisfies the Cromwell restriction, but
would not be considered an antiprism in the traditional sense.



It is very easy to show that if  P1  and  P2  are the bases of an anti-
prism, one can change the distance between them, translate either
one arbitrarily, or replace it by a homothetic copy (that is, replace
it by a reduced or enlarged copy, without rotating).

Here are a few results that involve our concept.

Proposition 1.  Every convex polygon  P1  is a basis of a
3-antiprism.

Proof. By construction of a suitable polygon P2.  The only restric-
tion on  P2  is that it has the same number of sides as  P1, and that
the triangles determined by the sides of  P1  and  P2 with appropri-
ate vertices of the other be non-overlapping.  For a given  P1  the
construction of P2 is easy:  At each vertex of  P1  Draw a support-
ing line that intersects  P1  in that point only; then the intersection
of the halfplanes determined by these lines and containing  P1
yields a suitable  P2.  Finally, lifting one of them (say) perpen-
dicularly out of the common plane and taking the convex hull
yields the required antiprism.

Figure 2 can be interpreted as arising by this construction, with the
top square playing the role of  P1.

In the case of regular polygons, and many others,  P2  can be cho-
sen as a polar of  P1  with respect to a suitable circle.  However,
many related questions arise. For example:  For each  P1,  can P2 be
always chosen as a polar of  P1  with respect to a suitable circle?  If
the answer is affirmative, one could further ask whether every po-
lar of  P1  can be chosen as  P2.

Broadie [2] provided an example that shows the answer to the last
question is negative.  With slight changes made for sake of easier
visualization, Broadie's example is shown in Figure 4.  The reason
for the failure is that the convex hulls of edges of one of the bases
with the dual vertices fail to form the "mantle" of the convex hull
of the bases.  However, it is easy to show that for every triangle,



some polar is suitable –– thus triangles cannot provide a negative
answer to the first question.  We shall not give here a proof, since

(a)      (b)

(c)      (d)
Figure 4.  An example modified from Broadie [2].  (a) shows a tri-
angle and its polar with respect to a circle.  (b) is a side-view of the
non-convex polyhedron resulting from the antiprism construction.
(c) and (d) show views of this polyhedron from straight above; in
(d) the side-triangles that have edges in the upper basis have been
omitted, for better visibility of the bottom basis and the other sides.



it will follow from Broadie's general result which will be quoted in
Part 3.  But a small modification of this construction, shown in
Figure 5, can be used to establish a negative answer to the first
question for quadrangles.

All the above can also be seen as a consequence of the following
Proposition 2.  For it we need a definition.

Let  P  be a convex polygon. The polarity kernel  ∏(P)  of the
polygon  P  consists of all the interior points of  P  which can serve
as centers of circles with respect to which the polar of  P  and  P
can serve as bases of an antiprism.  With this we have:

Proposition 2.  The polarity kernel  ∏(P)  of the convex polygon
P  consists of all interior points  X  of  P  such that the perpen-
dicular from  X  to the line determined by each edge of  P  is a
point of that edge itself.

To prove the proposition directly it is sufficient to take as the circle
any sufficiently large one.  Then the polar of each edge of the con-
vex polygon  P  will be situated "beyond" the edge, and thus no
non-convexity can arise.

It is obvious that the polarity kernel of the triangle in Figure 4 does
not contain the center of the circle used in the polarity, and that the
polarity kernel of the parallelogram in Figure 5 is empty. All the
above also suggests that it may be worthwhile to modify the defi-
nition of a 3-antiprisms as follows:

Let  P1  and  P2  be two simple (that is, non-selfintersecting) poly-
gons, with vertices  V1, V2, ... , Vn  and  W1, W2, ... , Wn  respec-
tively.  If the triangles  V1V2W1,  V2W1W2,  V2V2W2, ... form a
"ring" that is not selfintersecting, then that ring and the bases  P1
and  P2  form an acoptic (that is, non-selfintersecting) 3-antiprism.
Clearly, the 3-antiprisms of the original definition are acoptic 3-
antiprisms, and so are those in Figures 4 and 5.



Problem 1.  Characterize the pairs of simple polygons that can
serve as bases of acoptic 3-antiprisms.

(a)       (b)

(c)        (d)

Figure 5. An example of a polygon (in fact, a parallelogram) which
cannot form an antiprism with any polar.  The views are as in Fig-
ure 4.



Problem 2.  Characterize the polarity kernels  ∏(P)  of simple
polygons  P.
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