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Introduction. Polyhedra are most often considered as
being determined by the planar polygons that are their faces. One
of the characteristic properties of the faces of a polyhedron is that
every edge is shared by two — and only two — faces. It seems that a
question, very natural in this context, has never been asked — much
less answered. The question is: Do there exist families of
polygons in Euclidean 3-space E’ such that each edge of every
polygon is an edge of precisely three polygons in the family. Such
a family will be called a (1-2-3)-family or (1-2-3)-complex. This
name is meant to remind us that, in the language of complexes, for
every 1-cell (that is, edge) the number of 2-cells (that is, faces) of
which it is an edge is 3.

Are there any such families? In the next section we shall
show that the answer is affirmative, even if additional conditions
are imposed. In the last section we shall mention various open
problems related to this topic.

2. Examples of (1-2-3)-families. The simplest examples can
be constructed starting with some of the well known polyhedra —
the Platonic (that is, regular) convex polyhedra, and the
Archimedean (also known as uniform or semi-regular) polyhedra.

The smallest example can be obtained from the regular
octahedron (Figure 1) by noticing that every edge in contained in
an "equatorial square". Hence the family consisting of the eight
triangles of the octahedron, together with the three squares, is a



(1-2-3)-complex. From the Archimedean polyhedra such
complexes can be obtained in the following cases (see Figure 2):

The cuboctahedron (3.4.3.4) together with four regular
hexagons.

The rhombicuboctahedron (3.4.4.4) together with six
regular octagons.

The icosidodecahedron (3.5.3.5) together with six regular
decagons.

The rhombicosidodecahedron (3.4.5.4) together with
twelve regular decagons.

All these examples have polygons that intersect each other
along segments that are not edges of the polygons involved. Are
there any acoptic (1-2-3)-complexes, that is, (1-2-3)-complexes
without such intersections? (In other words, in acoptic complexes
any two polygons that intersect must have either a common vertex,
or else a whole edge in common.)

Here is a method to construct acoptic (1-2-3)-complexes.
Start with any 3-valent convex polyhedron P, that is, a
polyhedron in which every vertex belongs to precisely three edges,
and hence to three faces. (Such polyhedra exist in great profusion.
Three of the Platonic polyhedra and seven of the Archimedean
ones are 3-valent. For every even number n of vertices there exist
3-valent polyhedra with n vertices; moreover, the number of such
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Figure 1. Octahedron {3,4}



polyhedra with n vertices increases very rapidly with n.) Next,
from some interior point O of P make a uniformly expanded
(stretched) copy P* of P. Notice that any edge of P is parallel to
the corresponding edge of P*, and the latter lies in the plane
determined by the former and O. Finally, add to the polygons of
P and of P* the quadrangles (trapezes) determined by an edge of
P and the corresponding edge of P*. The resulting family is a
(1-2-3)-complex. Indeed, each edge of P or P* is now in three
polygons — the third one being one of the added quadrangles — and
each other edge of the complex lies on three of the added

quadrangles. The construction is illustrated in Figure 3 for the case
P is a cube.

This construction can be considered as a special case of the
following. Start with a 4-dimensional convex polytope in which

Rhombicuboctahedron (3.4.4.4)

Icosidodecahedron (3.5.3.5)  Rhombicosidodecahedron (3.4.5.4)
Figure 2.



This construction can be considered as a special case of the
following. Start with a 4-dimensional convex polytope in which
every vertex belongs to four 3-dimensional cells, and hence to four
edges and six 2-dimensional faces. Using any of the
3-dimensional faces as a "window", form a "Schlegel diagram" of
the polytope. The vertices, edges and polygons of this diagram
form a (1-2-3)-complex. The previous construction corresponds to
the case in which the 4-dimensional polytope is the prism with P
as basis, and Figure 3 can serve as (the well known) Schlegel
diagram of the 4-dimensional cube.

A different generalization of the above construction is less
obvious, and we formulate the result as:

Theorem. The edges of every convex polyhedron P form
a subgraph of the 1-skeleton of an acoptic (1-2-3)-complex.

Proof. We start by constructing P* as before — but now
adding quadrangles would not work if some vertex of P has
valence greater than 3. In that case, we construct p* by the
following modification of P*: cut off each vertex of valence > 4
by a plane sufficiently close to that vertex so that the various cuts
do not affect each other or the 3-valent vertices. Thus every vertex

Figure 3.



of P is 3-valent, and each vertex of P of valence k =4 has
been replaced by k vertices which determine a k-sided face of

P The k edges of such a face are joined by triangles to the
vertex of P which led to them. All edges of P are joined to the

corresponding edges of P* (which may have been truncated once
or twice). Adding the faces of P and of p* completes the
construction of the required (1-2-3)-complex. The construction is
illustrated in Figure 4 in the case P is the octahedron..

In view of the well-known theorem of Steinitz (see, for
example, [G, Section 13.1]], [2, Section 2.8], [3, Chapter 4]), this
result is equivalent to saying that every 3-connected planar graph is

isomorphic to a subgraph of the 1-skeleton of an acoptic (1-2-3)-
complex. From this formulation, the following question arises

naturally:
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Problem 1. Is every 3-connected graph is isomorphic to a
subgraph of the 1-skeleton of an acoptic (1-2-3)-complex ?

The answer is affirmative if the complex is not required to
be acoptic. The proof can be obtained by modifying the
construction used in the proof of the above theorem; let P’ be
obtained by suitable translation of an imbedding of the graph in

E’, and P" by a suitable modification of the truncation step. If
the problem has a negative answer, would it make a difference if
the complex were allowed to be in 4-dimensional space ?

It is easy to verify that if the polyhedron P in the theorem
has v vertices and e edges, then the (1-2-3)-complex
constructed has fewer than 2v + e/2 vertices.

Problem 2. Is there a better way to construct the (1-2-3)-
complex, so that fewer vertices are required ?

Related topics. The definition of the complexes
considered so far can be modified in various ways. Possibly the
simplest it to declare a (1-2-4)-complex as a collection of polygons
such that each edge of each polygon is an edge of precisely four of
the polygons. A simple example is the Platonic icosahedron
(Figure 5(a)), if to the twenty triangles one adds the twelve
pentagons determined by its edges. Another example is obtained
by adding to the twelve pentagrams of the small stellated
dodecahedron {5/2, 5} the twenty triangles determined by its
edges (Figure 5(b)).

It is not hard to see that the edges of every 4-valent convex
polyhedron are part of a (1-2-4)-complex in E’.

Problem 3. Is every 4-valent planar graph isomorphic to a
subgraph of the 1-skeleton of an acoptic (1-2-4)-complex in E’?
In E*?



Similar questions can be asked for 4-connected graphs,
with or without the planarity requirement.
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Comment (Added August 19, 2003).

Two papers that may seem relevant to the topic of this note came
to my attention since its submission.

The first is the Web version of a paper [4] by Guy Inchbald. He
considers certain polyhedra-like objects in which some of the
edges are contained in three faces. The precise definition of these
objects is not clear to me, but it is quite different from the one
adopted here. Indeed, Inchbald does not admit the smallest
example presented above (the eight triangles and three squares of
the complex in Figure 1), but accepts the object obtained from it by
deleting two disjoint triangles.

The second is a long paper by Jacek Swiatkowski [5]. It deals with
polygonal 2-complexes in which each edge belongs to precisely
three 2-faces. The center of attention are very symmetric
complexes of this kind. However, despite the geometric
connotation of the title, only purely combinatorial complexes and
their symmetries are considered.
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