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ON THE GEOMETRY OF MINKOWSKI PLANES

by E. Asplund and B. Grünbaum *)

(Reçu le 19 juillet 1960.)

The following propositions of elementary Euclidean geometry
are well-known.

If D is the orthocenter of the triangle with vertices A, B, C,

then each of the points A, B, C, D is the orthocenter of the

triangle having as vertices the three other points. The circum
circles of the four triangles hâve ail the same diameter.

In the présent note we shall show that thèse and other pro
positions of Euclidean geometry remain, to some extent, valid
also in Minkowski planes. Moreover, some of the results yield
characterizations of centrally symmetric convex curves, or of

ellipses, in terms of properties of triangles.
In the sequel C shall dénote a bounded, closed, strictly convex

and smooth curve in the plane, which has the origin 0 as center
of symmetry. Any curve of the type x+\C (where xisa point
and X a positive real number) derived from C by similarity and

translation, shall be called a Minkowski circle, or a circle, for

short, with center x and radius X. The union of x -\- XC and its

interior shall be denoted by x + XD and called a dise.

The following facts are obvious for any Minkowski circle C.

1. Given any three non-collinear points there exists exactly
one circle x + XC containing them.

2. If x 1
i=- x2x

2 then (x ± +Xx C) fl (# 2 +X2 Q contains at

most two points.
3. If x x

x2x
2

and y x ,
y2y 2

e (x ± +C)f! (x 2 +C) with y x =£ y 2i

then x 1 + x2x
2 = y x + y 2 .

Using thèse properties we shall establish

Theorem 1. Let p i? i=1,2,3,4,be points in the -plane, no

three collinear, and let x i + \ C, i = 1, 2, 3, 4, be circles such

that p i exj + X3X

3

- C for ail i=éj. // X
x =X2 =X3 =1, then

X
4 =l.
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Theorem 2. Let p1?p 1? p 2 ,
p3p 3

be distinct points of C, and let

jj + C, j = 1, 2, 3, èe zAree circles différent from G cacA 0/
3

which contains two of the three points p t . Then f] (y i +C)is
fto£ empty, and consists of precisely one point (the C-orthocenter
of the triangle with vertices p l7 p27p 27 p 3

).

Since the two theorems are proved quite similarly (and also

easily deducible from each other) we shall prove only the first one.

Proof of Theorem 1. Using the property 3 stated above, it

follows from the assumptions of the tbeorem that x i + x^

=Pk+P* whenever { i, /, k) ={1,2, 3}. Let x 0 =p2 +p3
—xv Then {p 2 , p 3 } = (x 1 +C)flUo+c) and

7
since

+ === Pi + Pz, also {/?!, p s
} = (x 2 +C)fi (^o + C). The

refore {p^ p 2 , p s ] c^ 0 +C; since {/?!, /? 2 , p 3 ] cx4+X4C,it
follows from the above property 1 that x 0 = x± and X4X

4 = 1.

This ends the proof of Theorem 1.

Remark 1. From the above équations it follows that

12 1

ô +ô =ô (jPi + jP2 + I n other words, the centroid

of the triangle with vertices p±lp ±1 p 2 ,
p3p 3 belongs to the segment

determined by the center x 4x
4

of the " circumcircle "
x^ + C and

by the intersection-point /? 4
of the three circles obtained by

" mirroring "x4 + Con the midpoints of the sides of the triangle ;

moreover, the centroid divides this segment in the ratio 1 : 2.

Remark 2. It is easily seen that each of the points p ± , p 2 ,

/? 3 , /? 4
is the C-orthocenter of the triangle determined by the other

three points. If C is a Euclidean circle, the C-orthocenter
coincides with the orthocenter, and the équation of Remark 1

expresses in this case the well-known relation between the

centroid, the circumcenter and the orthocenter of a triangle;
they détermine Euler's line, which may, therefore, be generalized
to Minkowski planes.

Remark 3. In both the Euclidean and the Minkowski case,

the three points on Euler's line (centroid c, orthocenter h, and

circumcenter r) of any triangle T may be " completed " by a

1 2

fourth point c* = — r + — A, which is the centroid of the asso



ciated triangle T*, congruent to T, whose vertices are obtained

by mirroring the circumcenter of T in the midpoints of the sides

of T. The above becomes particularly clear if the complète

symmetry of the relationship between T and T* is noted; thus

(T*\* = T, r* = A; A* = r.

The fact that we used the central symmetry of C in the proof
of Theorem lis not accidentai. Indeed, we hâve

Theorem 3. A strictly convex, smooth, closed curve K has a

center of symmetry if (and only if) it has the following property.
For any three (différent) translates K±lK

±1
K

2 ,

K3K
3 of K, no two

of which are mutually tangent and ail three passing through a

common point x, there exists a translate K4K
4 of K passing through

the three points of intersection K
t f] K

3 ,
i /', i, /=1,2,3

différent from x.

Proof. Given any chord of K there is a unique parallelogram
inscribed in K which has the given chord as one of its sides.

This parallelogram is degenerate exactly in the case when the

(unique) supporting lines at the end-points of the chord are

parallel. We shall show that the diagonals of a non-degenerate
parallelogram are such " degenerate parallelograms ". Let the

origin be in the center of the non-degenerate parallelogram, so

that we may dénote its vertices by a, b, —a and —b. Suppose
that the diagonal [a, — a] is a side of another non-degenerate
parallelogram inscribed in K, whose other two vertices we may
dénote by a+c and —a+c. Put K

x = K, K2K
2 =K+a—-b

and K3K
3 = K -f- 2a. Thèse three translates ail intersect at the

point <2, and so by the conditions of the theorem there must be

a fourth translate K4K
4 passing through the points —6, 2a —b

and a+c, which belong respectrvely to K
x f| K

2 ,
K2K

2 fl K3K
3

and
K3K

3 n Xi- Thus, the translate K5K
5 = K4K

4 —a+b passes
through a, — a and b + c, which means that one has either
K5K

5 = KorKs = K—c. The first case is impossible, since it

would imply b=aorb=—a. The second case would mean
that b+2c eK. We then repeat the whole argument once
more with K^ =K—a+b and, Kg =K—2a instead of K2K

2

and K3K
3

and find that also —b+2c eK. This is absurd, hence

we hâve proved that the diagonals of any parallelogram inscribed



in K are thamselves degenerate inscribed parallelograms, i.e.

that they connect the points of contact between K and two

parallel supporting lines. Consider now two such chords in K.

Take a chord Connecting an endpoint of one of the previous
chords with an endpoint of the other and construct its paralle
logram. Then, by the above, the diagonals of this parallelogram
hâve the parallel tangent line property, hence they coincide with
the two original chords. But now we hâve proved the theorem,
since we hâve constructed a center of symmetry for K, namely
the common center of ail its inscribed parallelogram s.

Theorem 3 may be thought of as the converse of Theorem 1.

In the same way Theorem 2 has a converse, which is easily
deducible from the three preceding theorems.

Theorem 4. Let Kbea strictly convex, smooth, closed curve.

Suppose that K has the property that whenever jour of its translates
4

K
i7 i=1,2,3,4, satisfy the conditions that p K^ is empty but

i = i

.H. Kj are non-empty for i = 1, 2, 3, then .H K3K
3

- is also non

empty. Then K has a center of symmetry.

Proof. Take three translates K
x ,

K2K
2

and K3K
3

of K that
satisfy the conditions for Theorem 3. Suppose moreover, that
the chord in K

x which connects the intersection points of K
x

with K2K
2

and K3K
3 respectively which are différent from the triple

intersection, is not a chord whose endpoint tangents are parallel.
Let K4K

4
be the unique translate of K différent from K

x which
also contains this segment as a chord. By the conditions of

Theorem 4, K4K
4 passes through the remaining double intersection

point of K2K
2

and K
3 . However, the above mentioned chord in

K
x

is never of the " degenerate parallelogram " type, since if it

were, we could fînd the desired translate K4K
4 passing through the

intersection points of K1?K

1?
K2K

2
and K3K

3 outside of K
x fl K2K

2 f| K3K
3

by a passage to the limit. Hence Theorem 3is applicable and

we hâve proved Theorem 4.

Remark 4. In distinction from theorems of a similar nature

given in [6, 7, B], the properties used in Theorems 3 and 4 to

characterize centrally symmetric convex curves K make no

référence to the point which is to be shown to be the center



of K. The characterization in [6], which may equivalently be

formulated as
" There exists a point x such that each point of K

is the vertex of an affine-regular hexagon with center x, ail of

whose belong to K ", fails if the centers of the hexa

gons are not assumed to be fixed. Indeed, the curve K (s)

= {(sin 9; cos cp + s (1 — cos 69); 0 < 9 <_ 2n} is easily seen

to be convex for suffîciently small positive s, not to hâve a

center for z > 0, and to allow an inscribed regular hexagon
(of side 1) to rotate in it. (Similar curves were studied in [4].)

The notion of the Feuerbach (or " nine-points ") circle of a

triangle also (partially) generalizes to Minkowski planes. The

Feuerbach circle (in a Minkowski plane) of a triangle with ver
tices x x ,

x 2 ,
x3x

3
and circumcircle Cis the circle — (x 1 -f- x2x

2 + x 3
)

+ ic
Theorem 5. In any Minkowski plane, the Feuerbach circle

of a triangle passes through six " remarkable " points ; the mid
points of the sides of the triangle, and the midpoints of the segments
determined by the C-orthocenter and the vertices.

Proof. The theorem may be established by an easy compu
tation. Indeed, since x3x

3 eC, the midpoint — {x 1 + x 2
) of the op

l 1

posite side of the triangle satisfîe s — (x 1 + x 2
) =— (x 1 -\- x2x

2 -\- x 3
)il l

—— x s e— (x 1 +x2 + 3
) +-^G, and similarly for the two

other midpoints. On the other hand,. for the midpoint — x i

+ "2"
( x i +X2 + x s) of the C-orthocenter and a vertex we hâve,

obviously, - (x ± +x2 + x 3
) +jxi e| (x ± + x2x

2 + x 3
) +iC;

this ends the proof of the theorem.
Remark 5. As in the Euclidean case, it is easily established

that the four triangles derived from a given triangle T and its

C-orthocenter, hâve the same Feuerbach circle; it is also the

Feuerbach circle of the four triangles derived from the " asso
ciated " triangle and its C-orthocenter.

In Euclidean geometry the following property of the Feuer
bach circle is easily established:



(*) The Feuerbach circle of any triangle passes through the

three intersections of a side of the triangle with the line deter
mined by the opposite vertex and the orthocenter.

Theorem 6. The only Minkowski planes with the pro
perty (*) (with C-orthocenter substituted for orthocenter) are

those whose circles are ellipses.

Proof. It is well-known ([l], p. 143) that ellipses are the

only centrally symmetric convex curves with the following
property :

(**) The midpoints of any pair of parallel chords are

collinear with the center.
We shall show that property (*) implies (**). Let y i eC,

i = 1, 2, 3, 4, be four points such that the chord with end
points y 1

and y2y 2
is parallel to that with endpoints y3y 3

and y 4.y 4 .

Then x { =yx +y2+y3— 2y t ,
for i=1,2,3, are vertices of

a triangle with circumcenter r=y± + 2/ 2 +Vz an( i circum
circle r -j- 2C, whose Feuerbach circle is C and whose C-ortho
center is h——r=— (y 1 +y2+ y 3

). Now if <y 4y
4

is (as

assumed in (*)) the intersection of the line determined by x s
and

h with that determined by x x
and x2x

2 (which also contains y3y 3
and

is parallel to the chord 2/ l 7y 2 ), the collinearity oi — (y 1 + y 2
) and

~ (y 3 + y 4) with 0 follows from the fact that the lines determined

by x s
and A, by j (y 1 + y 2

) and 0, by r and y3y 3 are parallel, and

h=—r. Thus (*) implies (**) and Theorem 6is proved.
A great number of theorems in the geometry of circles in the

Euclidean plane remain valid in Minkowski geometry if it is

assumed that ail the circles are of the same size. As an example
we cite the following theorem, due to Miquel for Euclidean circles

of arbitrary sizes ([3], pp. 86/87):

Theorem 7. Let four points x i of C be given and let Q,
i = 1, 2, 3, 4, be the four translates of C (différent from C) deter
mined by pairs of neighboring points. Then there exists a translate

of C containing the four points y i7 where y i eQfl Q+l,Q
+1 ,

(C 5 = C
x ),

but y i i C.

The proof of Theorem 7 is very similar to that of Theo

rem 1 and we omit it. The circle containing the points y i
is

#1 + X2X
2 + XSX

S + X * + C



Some results transfer Verbatim from the Euclidean to the

Minkowski case (usually because the equality of size is assumed,

explicitly or implicitly, in the Euclidean case). An example of

this kind is a
" chain of theorems " due to Coolidge [2] (repro

duced in [3], p. 94).

A. Florian [5] mentions, in an account of some unpublished
results of J. Molnâr, the following proposition: If a circle C in

the Euclidean plane is covered by the union of three circular
dises D

i? i= 1, 2, 3, of diameters not exceeding that of C, then

the dise D, bounded by C, is also covered by I)
1

U D2D
2

U D
3 .

We shall prove for Minkowski planes
3

Theorem 8. If CcU (x i +\D) and \<lforï =1,2,3,3*=*then D c U (x i + \ D).
2=l

Proof. Assuming C x t +\C for ail i, let p x , p 2 , p s
be

points of C such that p i
e (Xj + Xj D) fl {x k +\D) for

{ i, /, k} = { 1, 2, 3}. We defme y i =pj +ph for {i, /, k}
= {1,2, 3}. By property 2 (p. 300), it follows that Df] (x i +\D)
3 Dfi (Vi + D). On the other hand, the points p x , p 2 ,

p3p 3
and

the circles C, y 1 + C, y2y 2 + C, y3y 3 + G satisfy the conditions of
3

Theorem 2. Therefore, there exists a point p e p) (?/; + C).

To complète the proof we hâve only to show that p e D; then,
since each point of D belongs to a segment with endpoints p

and some x e G, and each such segment is contained in one of
3

the dises y i + D, it follows that D is contained in U (y i + D),
i = l

3

and thus also in U (x i +\ D), as claimed. But if p$ Dis
î=i

assumed, a contradiction is readily reached: Let L be the Une

determined by p and 0, and let p* be the point of L f| C with
the greater distance from p. Since p* gC, for a suitable iwe
hâve p* eyi +D. But p g^ +D which is impossible since
the segment with endpoints p and /?* is longer than the diameter
of D parallel to it, and therefore may not be covered by any
translate of D.



This ends the proof of Theorem 8.

Obvious examples show that the restriction \ <_ 1 in Theo
rem 8 may not be omitted.

Remark 6. It is easily seen that Theorem 8 is valid also if

the circle C is not assumed to be strictly convex and smooth.
The argument is completely elementary but somewhat lengthy,
and we omit it. On the other hand, Theorems 1 qnd 2 hâve

to be properly reformulated in order to be applicable (and valid)
for circles which are not strictly con\ex and smooth.

Remark 7. It is easily seen that Theorems 1 and 2do not

generalize to higher-dimensional spaces. Theorem Bis probably
valid for spaces of any dimension (with n -\- 1 " solid " sphères

covering the surface of another one in the case),

although no proof seems to be known even in the case of Eucli
dean sphères in three-dimensional space.

Note. After the présent note was completed, the paper
" Zur elementaren Dreicksgeometrie in der komplexen Ebene "

(Enseign. Math., 4 (1958), 178-211), by J. E. Hofmann, came

to our attention. In this paper the geometry of triangles in the

Euclidean plane is developed (in part) in a way closely related
to the method used in the présent paper.
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