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1. Introduction.  "Remarkable points" of triangles –– for example,
the centroid, the circumcenter and others –– have been studied in
detail; in fact, the recent book [3] by Clark Kimberling contains
information on 400 such "centers".  Although one can expect that in
case of quadrangles there should be an even larger number of
"remarkable points" –– only few have been discussed in the
literature.  Similar, and even more pronounced, is the disparity
between possibilities and available results concerning pentagons and
polygons with larger number of sides.  

The main aim of this short note is to present in Section 2 one such
"remarkable point" for pentagons.  We call it the Grunert point of the
pentagon, after Johann August Grunert, who announced its existence
in [1] and proved it in [2] –– more than 170 years ago.  We also
show that Grunert's result can be slightly strengthened, and discuss
some related developments.  In Section 3 several comments, as well
as the information available to me about the history of Grunert points
are presented.  Throughout, when speaking of a pentagon we shall
assume that its five vertices are at distinct points of the plane.

2. The main result.  Let  L(P,Q)  denote the line through the points
P  and  Q.  Then we have the following result, illustrated in Figure 1,
and formulated using the notation shown.

Grunert's theorem.  Given pentagon  P = ABCDE,  let us denote   
A* = L(B,C) ∩ L(D,E),   B* = L(C,D) ∩ L(E,A), ...,  and let  A*A  be
the midpoint of  A*  and  A, and  BE  be the midpoint of  B  and  E,
etc.  Then the five lines  L(A*A,BE),  L(B*B,AC),  etc. are concurrent.

We call the point of concurrency the Grunert point  G = G(P)  of the
pentagon  P.

In fact, the following stronger result holds (see Figure 2):

Theorem.  In the notation of Grunert's theorem, let, in addition,  B*C*
be the midpoint of  B*  and  C*,  C*D*  the midpoint of  C*  and  D*,
etc.   Then  C*D*  is on the line  L(A*A,BE),   D*E*  is on the line
L(B*B,AC),  etc.  Thus each of the five lines concurrent at the Grunert
point  G  carries three of the named points (besides  G).
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Proof.  Let us describe the vertices  A, B, C, D, E  by the (column)
vectors  a, b, c, d, e.  Then obviously  AD  is the point  (a + d)/2,  BE
is the point  (b + e)/2,  and so on.  With a little more calculation we
find that  A*, the intersection point of the lines  L(B,C)  and  L(D,E),
is given by

(b-c) |d, e| – (d–e) |b, c|
|b-c, e-d|    ,

where  |p, q|  denotes the  2 by 2  determinant with columns  p  and
q.  Analogous expressions are obtained for the points  B*, C*, D*
and  E*.  Then it is easy to find the formulas for  the remaining points
of interest,  A*A,  B*B, ... , and  A*B*,  B*C*, ... .  With this
information in hand, it can be verified at once that  A*A, BE  and
C*D* are collinear; by symmetry, this shows that all the appropriate
triplets are collinear. This establishes part of the Theorem.  The

Figure 1.  An illustrative example of the construction of the Grunert point

G = G(P)  of a pentagon  P = ABCDE.
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assertion that the Grunert point  G  is on all five such lines requires
–– by symmetry  –– the checking of only one collinearity, for
example, that of  G, AD  and  E*E.  This can be readily accomplished
if one uses the coordinates of G, namely

 
a.(|e, b|-|c, d|) + b.(|a, c|-|d, e|) + c.(|b, d|-|e, a|) + d.(|c, e|-|a,b|) + e.(|d, a|-|b, c|)

2(|a, c| + |b, d| + |c, e| + |d, a| + |e, b|)   ,

an expression which shows the required symmetry.  If invoking this
formula seems like a sleight of hand, one can, alternatively, find the
coordinates of the intersection point of the diagonals of the
quadrangle with vertices  AD, BE, E*E, A*A,  and show that it
coincides with the intersection point of the diagonals of the
quadrangle  CE, AD, D*D, E*E.  This proves the theorem since the
common intersection points are, in fact, the point  G.  Its coordinates
can therefore be found from either of the two quadrangles.  fl

Figure 2.  An illustration of Theorem 2.  The Grunert point  G  of the
pentagon  ABCDE is the common point of five lines, each of which passes

through three points determined by the vertices of the pentagon.
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3. Comments.

(i) In the formulation of his result in [1] and [2] Grunert
seems to have only convex pentagons in mind.  This is visible by his
determination of the points  A*, B*, etc.  by  "... extending the sides of
the pentagon till they intersect ...", and by the accompanying
diagrams.  On the other hand, such a restriction is not required for the
validity of the result.  In Figure 3 we show a convex pentagon (the
vertices are indicated by hollow dots) together with its Grunert point
(largest solid dot), the Grunert point of the pentagram with the same
vertices (next-to-largest solid dot), and the Grunert points of the other
ten different (unoriented) pentagons that have the same set of vertices.
The existence of Grunert points in all these situations is easy to
understand in view of the algebraic expressions used in the proof,
which do not depend on convexity or betweenness considerations.

(ii) Having presented the Theorem and its proof in the
previous section, it is now –– unfortunately –– the time to admit that
as formulated, neither the proof, nor the theorem itself, are valid.  As
is the case with many other theorems of Euclidean geometry (for
example, the theorem of Pappus), there are some exceptional cases in
which the original formulation of the theorem becomes meaningless,
even assuming that all the vertices are distinct.  Such exceptions
happen, among other situations, if some of the points used are
intersections of lines which are not prevented from being parallel.  In
the case of Pappus' theorem, careful presentations either list the many
cases which require special formulations, or else resolve the problem

Figure 3.  The solid dots are the Grunert points of the twelve distinct
(unoriented) pentagons possible with the five vertices (hollow dots).  The
largest dot corresponds to the pentagon shown, the second largest to the

corresponding pentagram.
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by presenting the result in the setting of projective geometry.  The
The same approaches could be used in the case of Grunert points;
Figure 4 shows the case in which one pair of sides of the pentagon
are  parallel.  In the projective formulation, the midpoints appearing
in the formulation of the theorem should be replaced by appropriate
harmonic points corresponding to the "points at infinity", and the
given proof would be valid if reformulated for homogeneous
coordinates.  Thus, after some skipped heartbeats, the Theorem is
revived.

(iii) But there is still another problem.  A contemplation of the
expression for the Grunert point  G  reveals at once where a danger
to the validity of the Theorem lies.  The formula is meaningless if the
denominator equals zero.  For a pentagon  ABCDE  this denominator
is the area of the "pentagram"  ACEBD.  Hence the polygon  ABCDE
in Figure 5 is an example of the unredeemable failure of our
Theorem.  The only rescue is to add a requirement to the effect that
the polygon  ABCDE  is such that the area of the polygon  ACEBD
is nonzero.  It is easy to verify that if points  B, C, D, E  in Figure 5
are kept fixed, the polygon  ACEBD  has zero area if and only in  A
has second coordinate equal  -2.  More generally, it can be shown
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Figure 4.  The variant of the Grunert point construction in case the pentagon
has a pair of parallel sides.
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that in the 2-dimensional manifold of classes of projectively
equivalent pentagons, the ones with no Grunert point correspond to a
1-dimensional submanifold.

(iv) It is not clear to me what is the root of the imprecision in
Grunert's own formulation of his theorem.  Was he really thinking
only of convex pentagons with no parallel sides?  Was the failure to
specify any condition due to sloppy thinking, or a naive point of
view, or the expectation that a serious reader will independently
figure out the details?  What is certain is that a similar attitude was
very wide-spread among geometers of that period –– unfortunately,
not only in that long-ago era.  Books could be written about the
failures of geometers to adequately define the concepts they are
investigating, and fully describe the gaps in the formulations and
proofs of many theorems.  It is highly disturbing that such departures
from our professed adherence to fully logical deductions continue to
the present day.

(v) Grunert's point seem to be largely forgotten.  The most
recent mention of it that I am aware of is in the remarkable but little
known survey [4] of elementary geometry in the nineteenth century,
by Max Simon, published in 1906.  Besides Grunert's papers, Simon
mentions (on pages 163 and 166) two papers as having
independently rediscovered Grunert's result. The first is by Paul
Serret in 1847, the second by J. Mention in 1853.  Both were
published in the journal Nouvelles Annales de Mathématiques, but I
have not been able to get a copy of either.

Figure 5.  A pentagon  ABCDE which has no Grunert point.
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(vi) Like the proof given above, Grunert's proof is also, in
essence, computational.  But the elementary nature of the result
points out a difference in the mathematical culture of that era
compared to more recent times.  The papers [1] and [2] were
published in one of the leading mathematical journals of its time. The
volume in which [2] appeared contains, among others, a collection of
results of N. H. Abel prepared for publication after Abel's death by A.
L. Crelle, as well as articles by Dirichlet, Gudermann, Gergonne,
Jacobi, Minding, Plücker and others –– very prominent mathe-
maticians of the period.

(vii) It is somewhat remarkable that there seems to be no
analog of the Grunert point for polygons with a number of sides
different from five.  Naturally, it is possible that only my lack of
imagination and inventiveness is responsible for my failure to find
such analogs, but certainly not any lack of trying.

(viii) The Grunert point  G(P)  is an affine invariant for penta-
gons  P  for which it is defined.  By this is meant that if  T  is a
nonsingular affine transformation of the plane then  T(G(P)) = G(T(P)).
In that respect, the Grunert point is like the vertex centroid, and the
area centroid –– which, in contrast to the Grunert point –– are
meaningful for polygons with any number of sides.  I venture the
following:

Conjecture. The vertex centroid has is the unique affine
invariant point-valued continuous function of polygons which, for
any fixed  n ≥ 3, is defined for all  n-gons.
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