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Abstract

Simple polygons can be made convex by a �nite number of $ips, or of $ipturns. These results
are extended to very general polygons. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let P be a simple polygon in the plane. For a pair A; B of non-adjacent vertices
of P let P∗ and P∗∗ be the two paths from A to B in P. Non-adjacent vertices A
and B are an exposed pair of vertices provided that a support line L of the convex
hull conv(P) of P contains A and B, but neither P∗ nor P∗∗ is contained in L. The
(ip image f(P;A; B) of P with respect to the exposed pair A and B is the polygon
P∗ ∪ rL(P∗∗), where rL denotes the (ip map (re$ection in the line L); see Fig. 1.
Similarly, the (ipturn image g(P;A; B) of P with respect to A and B is the polygon
P∗ ∪ hAB(P∗∗), where hAB denotes the (ipturn map (halfturn about the midpoint M of
the segment [A; B]); see Fig. 2. We note that for both $ip map and $ipturn map, if the
roles of P∗ and P∗∗ were reversed, a polygon congruent to f(P;A; B) or g(P;A; B)
would result; hence we can choose the path to be $ipped or $ipturned as convenient,
without a?ecting the �nal outcome of the constructions discussed.
The following result was �rst established by Sz.-Nagy [6] in 1939, as a solution to a

modi�cation of a problem posed by Erdős [3] in 1935; see comment (4) in Section 4.
Concerning later proofs and developments, and the somewhat chaotic history of the
result, see [5].
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Fig. 1. An illustration of the $ip operation.

Fig. 2. An illustration of the $ipturn operation.

Theorem 1 (Sz.-Nagy [6]). Every simple polygon in the plane can be transformed
into a convex polygon by a 8nite sequence of (ips determined at each step by an
exposed pair of vertices.

An analogous result for $ipturns was established in the early 1970s by R. R. Joss
and R. W. Shannon, who at that time were graduate students at the University of
Washington. Their result was published only in [5], where there is also an account of
the unfortunate circumstances that led to the delay in publication. The result is:

Theorem 2 (Joss and Shannon). Every simple polygon in the plane can be trans-
formed into a convex polygon by a 8nite sequence of (ipturns determined at each step
by an exposed pair of vertices. Moreover, if the polygon has n sides, the sequence
needs at most (n− 1)! (ipturns.

This is in contrast to the situation in Theorem 1, where—as shown by Joss and
Shannon—there is no �xed bound on the number of $ips needed even in case of



B. Gr.unbaum, J. Zaks /Discrete Mathematics 241 (2001) 333–342 335

quadrangles. It should be noted that in these results “convex polygon” has to be under-
stood in a slightly wider sense than usual, by allowing adjacent edges to be collinear; in
Section 2, we shall call such polygons “weakly convex”. Polygons P which are convex
in the usual sense, that is, for which the only vertices are the extreme points of their
convex hull conv(P), will here be called “strictly convex”.
Our main aim is to extend the above two theorems to more general plane polygons.

It will turn out that in such a more general setting Erd)os’s original problem has an
aRrmative solution.
In the next section, we shall give the de�nitions necessary for the formulation of

our results; the proofs will be given in Section 3, while the last section will present
various comments and some open problems.

2. De�nitions and results

An n-gon P= [V1; V2; : : : ; Vn], where n¿ 2, is a sequence of points Vi (the vertices
of P) in a plane, and closed segments [Vi; Vi+1], for i=1; 2; : : : ; n, where Vn+1 =V1 and
Vi �=Vi+1 for all i (the edges of P). If the value of n is not important, instead of n-gon
we shall often say polygon. Polygons may have coinciding vertices (provided they are
not adjacent), sel�ntersections and multiple sel�ntersections, overlaps or coincidences
of edges. Moreover, it is possible for a polygon to be subdimensional, that is, to have
a segment as its convex hull.
We need several concepts that specify di?erent classes of polyhedra. They are illus-

trated in Fig. 3.
A polygon P is said to be weakly convex if either

(i) P is a simple polygon, and it is contained in the boundary of its convex hull; in
other words, P is obtained from the strictly convex polygon conv(P) by subdi-
viding (that is, inserting additional vertices along) the edges of bd(conv(P)), the
boundary of its convex hull; or

(ii) P is subdimensional, and coincides with a subdivision of a segment [A; B] in two
(possibly coinciding) ways.

It is obvious that, in general, the “convex polygons” obtained in Theorems 1 and 2 are,
in fact, only weakly convex. Neither $ips, nor $ipturns, can lead to a strictly convex
polygon if one starts with a weakly convex one that is not strictly convex; even if the
starting polygon has no collinear adjacent edges, such edges may appear after $ips or
$ipturns (see Fig. 4).
A polygon P is said to be nearly convex if either

(i) P is contained in bd(conv(P)); or
(ii) P is subdimensional.

It is clear that every weakly convex polygon is nearly convex.
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Fig. 3. Nearly convex polygons; for clarity, vertices are indicated by small circles and labelled. Polygons (a)
and (b) are weakly convex, polygons (c), (d) and (e) are nearly convex but not weakly convex, Polygons
(b) and (d) are subdimensional. All except (e) are exposed.

Fig. 4. The polygon in (b) is weakly convex but not strictly convex; it arises from the polygon in (a) by a
$ip, and from the polygon in (c) by a $ipturn.

A polygon P is called exposed if it is nearly convex and each vertex of its convex
hull coincides with just one vertex of P.
For the more general polygons we consider here, the de�nition of exposed pairs of

vertices has to be modi�ed as well. The modi�cation is quite simple: If A and B are a
pair of vertices of P, determining the two paths P∗ and P∗∗ in P, then A and B are an
exposed pair provided they are contained in a support line L of conv(P), and neither
of the paths P∗ and P∗∗ is a subdivision of the segment [A; B]. Clearly, if P is a simple
polygon then the modi�ed de�nition of exposed pairs coincides with the original one.
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It is clear that an exposed polygon is invariant under any $ips that may be performed
on it. Hence the following is a best possible result:

Theorem 3. Every polygon in the plane can be transformed into an exposed polygon
by a 8nite sequence of (ips, determined at each step by an exposed pair of vertices.

However, the analogue of Theorem 2 leads to a better result:

Theorem 4. Every polygon in the plane can be transformed into a weakly convex
polygon by a 8nite sequence of (ipturns, determined at each step by an exposed pair
of vertices.

3. Proofs

In order to prove Theorem 3, we �rst consider the case in which P is subdimensional,
hence C =conv(P) is a segment. If P is not exposed, at least two vertices of P—say
A and B—coincide with one of the endpoints of C and form an exposed pair. Taking a
supporting line L of C that contains A and B but neither contains C nor is perpendicular
to C, and performing the $ip with respect to L, leads to a polygon f(P;A; B) which
is not subdimensional; see Fig. 5. Since no $ip will turn a fulldimensional polygon
into a subdimensional one, we can now restrict attention to the case that P is not
subdimensional.
We associate with the polygons we are $ipping a positive-valued function �, which

strictly increases with every $ip. Various choices � are possible; we shall use the
simplest one, which was suggested to us by Ayal Zaks: for any n-gon P, the value of
�(P) is the sum of the n(n− 1)=2 distances between pairs of vertices of P. Since we
assume that P is full-dimensional, it is obvious that �(P)¡�(f(P;A; B)) for every

Fig. 5. A subdimensional polygon that is not exposed can be transformed to a full-dimensional polygon by
a suitable $ip.
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$ip image of P; see Fig. 1. The existence of such a strictly increasing � shows that
there can be no revisits of any polygon from which we departed by a $ip.
We note that if a full-dimensional polygon P is not exposed, then either some vertex

of conv(P) coincides with two (or more) vertices of P, or, failing that, some pair of
neighboring vertices of conv(P) form an exposed pair. In either case a $ip is possible.
Let us now de�ne the sequence of $ips which, we claim, will lead to an exposed

polygon. The choice we make is that, as long as the polygon reached is not exposed,
we choose among the applicable $ips one which maximizes the increase in �. If this
procedure ends after a �nite number of steps, we are done. Hence, we shall assume
that the sequence Pj = [Vj;1; Vj;2; : : : ; Vj;n] of polygons obtained by successive $ips can
be continued inde�nitely, and we shall show that this leads to a contradiction.
Since the perimeter (sum of lengths of all edges) of a polygon is unchanged under

$ips, the values of �(Pj) are bounded; since they are increasing, they have a limit M .
From the uniformly bounded sequence of polygons Pj we can extract a subsequence
which converges to a limit-polygon Q, and is such that for each i=1; 2; : : : ; n, the se-
quence of corresponding vertices Vj; i also converges to a vertex Wi of Q= [W1; W2; : : : ;
Wn]. Now, we �rst show that Q must be an exposed polygon. Indeed, otherwise there
would be a $ip that would increase �(Q) by a positive �. Since � is a continuous
function, and forming the convex hull is a continuous operation, every Pj suRciently
far in the subsequence would admit a $ip which would increase � by at least �=2, thus
contradicting the choice of the $ips—since suRciently far polygons Pj have maximal
increases of � which tend to 0.
Now we are almost done. Since Q is exposed, every vertex Wi of conv(Q) can be

strictly separated by a line L from all the other vertices of Q. Let Ci be a circular disk
centered at Wi and not meeting L, and such that circles of the same radius centered
at all the other vertices of Q also miss L. The vertex Wi is a limit of the Vj; i’s of
the convergent subsequence, hence all but a �nite number of them are contained in
Ci. By the choice of Ci each such Vj; i is a vertex of conv(Pj), and as such is not
moved by any of the following $ips. Therefore, all such vertices Vj; i coincide with Wi.
Since there are at most n vertices Wi that are vertices of conv(Q), it follows that for
all suRciently large j the polygons conv(Pj) coincide, hence coincide with conv(Q).
Thus, the sequence Pj cannot be in�nite, and Theorem 3 is proved.
Turning now to a proof of Theorem 4, we note that the general idea of the proof is

similar to the above, but with two main di?erences. First, we have to �nd a di?erent
function � to use in the full-dimensional case, since the one used above does not
necessarily increase under $ipturns. Second, we shall consider P as having one of
the two possible orientations; then the edges of P are vectors, and these vectors are
only permuted in the order in which they appear in the polygon when the polygon
is $ipturned. However, as shown by an example in Section 4, we cannot expect to
�nd a function � that increases under every $ipturn. Hence we shall be satis�ed with
a function � that increases under every $ipturn we use; such a � will show that not
more than (n − 1)! successive $ipturns of this kind are possible if P is an n-gon; it
follows that there is no need for any limits, or for convergence arguments.
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Fig. 6. An illustration of the assertion that the contribution of points of C to � will be the same before and
after the $ipturn g(P;A; B). By $ipturning that path between A and B (in the illustration this is P∗∗) for
which P∗∗ ∪ [AB] is even, a ray through a relatively interior point of the segment [AQB] shows that the
parity of the winding number with respect to Z is unchanged, hence odd.

Our choice of � is the following. Let �(P) be the minimum of the total length of
segments in a family that covers all edges of P, and let �(P) be the sum of the areas
of all those components of the complement of P in the plane for which the winding
number with respect to P is odd. We put �(P)= �(P)+�(P), and we shall �rst justify
out claim that the � strictly increases with every $ipturn of the type we use. Clearly,
�(P) is not decreasing, but may well be unchanged by a $ipturn. Also, �(P) may
obviously stay unchanged (for example, if P is subdimensional), but it is less obvious
that it cannot decrease under a $ipturn.
To show this latter fact, let �(P) be the union of those regions (of the complement of

P in the plane) the points of which have an odd winding number. We recall that given
a point Z which is not on any edge of P, and given a ray H with endpoint Z which
passes through no vertex of P, then the winding number w(Z; H ;P) is the number
of times H meets an edge of P which crosses H from right to left, less the number
of such edges which cross H from left to right. It is easy to show that w(Z; H ;P) does
not depend on the particular ray H chosen; the common value for all H is the winding
number w(Z ;P) of the point Z . It is equally simple to show that all points Z in one
connected component C of the complement of P in the plane have the same winding
number w(Z ;P); this common value is the winding number w(C;P) of the region C
with respect to P. Thus �(P)=

⋃{C: w(C;P) is odd}, and �(P)= area(�(P)).
If �(P)= ∅ then �(P) will not decrease under any $ipturn. Hence let �(P) �= ∅ and

let C be a region which contributes to �(P). For a $ipturn hAB determined by extreme
vertices A and B of P consider the two paths P∗ and P∗∗ determined by A and
B, and the two polygons Q∗ =P∗ ∪ [AB] and Q∗∗ =P∗∗ ∪ [AB]. Then precisely one
of the numbers w(Z ;Q∗) and w(Z ;Q∗∗) is odd for every Z in C, hence (see the
caption of Fig. 6) the contribution of points of C to � will be the same before and
after the $ipturn g(P;A; B). On the other hand, points not in �(P) may after a $ip-
turn belong to an �-component of the image g(P;A; B), thus leading to an increase
in �.
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Since both �(P) and �(P) are nondecreasing under any $ipturns of P, we would
be done if their sum, �(P)= �(P) + �(P), were strictly increasing for every $ipturn
of P. However, this is not always the case, and we need to restrict the types of
$ipturns which we shall perform and to show that for them there is a strict increase
in �.
If P is a subdimensional n-gon let conv(P)=Q= [R; S] be the segment determined

by P. If P is not weakly convex, then either one of the endpoints of Q corresponds
to at least two vertices of P, or, failing that, at least one of the paths P∗ and P∗∗

determined by the (unique) vertices Vi at R and Vj at S contains overlapping edges.
In the �rst case, we perform a $ipturn with respect to the two coinciding vertices; the
resulting polygon determines a segment which is longer than Q hence yields a strict
increase in �(P)= �(P). In the second case, let Vk be that vertex which is closest to
Vi among those vertices of P for which both incident edges lead in the direction away
from Vi. Then we perform a $ipturn with respect to Vi and Vk . (The �rst case could
be interpreted as a special case of the second.) Again the segment determined by the
resulting polygon has increased in length, thus increasing �(P)= �(P). Since $ipturn
images of subdimensional polygons are subdimensional, we are done in case of such
polygons.
Turning now to the case of full-dimensional P, let Q=conv(P). We �rst consider

the case in which A and B are exposed vertices of P such that A is a vertex of Q and
B satis�es one of the following conditions:

(i) B coincides with A;
(ii) B does not coincide with A, but B is a point of a supporting line L of Q that

passes through A, and two edges of P incident with B overlap but contain no
relatively interior point of the segment [A; B];

(iii) B does not coincide with A, but B is a point of a supporting line L of Q that
passes through A, two edges of P incident with B do not overlap but neither
contains a relatively interior point of the segment [A; B].

In cases (i) and (ii) the value of �(P) increases under the $ipturn g(P;A; B) since
�(P) clearly increases. In case (iii), the $ipturn increases �(P) if one of the paths P∗

and P∗∗ determined by A and B is contained in L, and it increases �(P) if neither of
these paths is contained in L.
If no such A and B exist, let L be a support line of Q determined by an edge

E of Q. Then, since the former case is assumed not to occur, the boundary of
Q contains no overlapping edges of P. Hence either the part of P contained in L
is just a subdivision of E, or else there are exposed points A and B of P con-
tained in L such that neither of the paths P∗ and P∗∗ is contained in L, and the
edges incident with A or B contain no relatively interior points of the segment [A; B].
Then the $ipturn g(P;A; B) increases �(P) since points near [A; B] now contribute to
�(P).
Since the possibility of applying $ipturns of the kinds described can be absent only

if the polygon is weakly convex, this completes the proof of Theorem 4.
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Fig. 7. The $ipturn of the polygon P = �V1;V2;V3;V4;V5;V6� with respect to the exposed pair of vertices
V2;V4 yields a polygon congruent to P, showing that no function �(P) can strictly increase under every
$ipturn. The method of proof of Theorem 4 would lead either to the exposed pair V1;V4, or to the exposed
pair V5;V2; in either case �(P) increases, and hence �(P) increases as well.

4. Comments

(1) The necessity of distinguishing cases in the proof of Theorem 4 is not due to
a failure to �nd a better function �. Indeed, as shown by the example in Fig. 7, it
is possible that P is congruent with a $ipturned image g(P;A; B), so that no � could
strictly increase with every $ipturn.
(2) The proofs of Theorems 1 and 2 found in the literature use the idea of a function

� that increases with every $ip or $ipturn; in all cases the area enclosed by the polygon
is taken as �. This choice does not work for Theorems 3 and 4. The function � we
used in the proof of Theorem 4 could also work for Theorem 3, but the choice we
adopted makes for a more elegant proof. Naturally, the � we used in the proof of
Theorem 3 could also be used to establish Theorem 1.
(3) Theorems 3 and 4 are clearly generalizations of Theorems 1 and 2. Indeed, if the

starting polygon P is simple then the resulting polygons in both cases are also simple.
(4) In [3], Erd)os asked for a proof of the assertion that starting from a simple polygon

P one can reach a convex polygon after a �nite number of steps, where each step can be
described (in the terminology of our Section 1) as performing simultaneously all $ips
possible at the given stage. Sz.-Nagy [6] observed that this construction may lead from
a simple P to a sel�ntersecting polygon, thus halting the construction. However, if we
interpret $ips in the sense of the de�nition in Section 2, then it is possible to establish
an aRrmative solution to Erd)os’s problem, even without restriction to simple polygons.
(5) From a report of one of the referees and from a friendly communication of Pro-

fessor Godfried Toussaint we learned of the existence of papers [2,7]. In an expanded
version of the former, a proof of Sz.-Nagy’s theorem (Theorem 1 above) is given. The
latter has a variety of results that overlap our Theorems 3 and 4, and an extensive
bibliography.
(6) In [5], an example due to Joss and Shannon is given which shows that even

in case of Theorem 1, there is no bound on the number of steps needed to convexify
all n-gons, for any �xed n¿ 4. They also conjectured that in case of Theorem 2 the
universal bound (n− 1)! could be improved to 1

4n
2. This conjecture is still open, as is

the question whether the same bound applies in case of Theorem 4. The best partial
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result is due to Ahn et al. [1], who show that any simple n-gon with edges in k
directions can be convexi�ed after at most n(k − 1)=2 $ipturns.
(7) Wegner [8] considered the question of inversion of $ips for simple polygons.

By this is meant �nding a diagonal D of the simple n-gon P, which has its endpoints
at vertices A and B of P, and re$ecting one of the two arcs of P determined by A
and B across D—provided the resulting polygon is simple. Wegner conjectured that for
every simple polygon, any sequence of inverse $ips is �nite. However, this conjecture
has been disproved (for each n=4) by Fevens et al. [4] by an elegant construction.
A similar result for every n¿ 4 is to appear in an expanded version of [4].

(8) It is an open question whether any (simple? unknotted?) polygon in three-
dimensional space can be transformed into a weakly convex planar polygon by a �nite
number of suitable $ips or $ipturns.
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