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Abstract

A polyhedron in E is said to be isohedral (or an isohedron) if its faces are equivalent under
the action of its group of symmetries. We use Mdbius nets of the three reflection groups of
the five Platonic solids to construct isohedra whose faces are dart-shaped, and whose edges lie
in planes of reflective symmetry of the polyhedron. This technique for constructing isohedra
has only recently been used; it yields many new results in addition to those described in this
paper. In the final section we also describe some other isohedra with dart-shaped faces. (© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

An isohedron is a polyhedron in Euclidean 3-space E* in which all faces form a
single orbit under the group of isometric symmetries of the polyhedron. In the case
of convex polyhedra these have been studied for close to two centuries. More recently
isohedra that have nonconvex faces (but no selfintersections) have been investigated by
Griinbaum and Shephard [7]. However, none of these have faces which are “darts”, that
is, simple nonconvex quadrangles. This leads to a number of questions, some of which
are still open (see Section 7). Here we solve one of these problems by showing that
there exist many isohedra with dart-shaped faces if selfintersections of the polyhedron
are allowed. We restrict attention to isohedra whose symmetry groups are the groups
of all symmetries of the Platonic solids, that is, to the tetrahedral, octahedral and
icosahedral reflection groups. Among these polyhedra we initially consider only those
whose edges lie in planes of reflective symmetry.
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Fig. 1. A dart V' with apex 4 and nadir C; [ is the intersection point of the external diagonal with the
(extended) internal diagonal. Here a(V)=2 and (V) =1/3.

We shall enumerate all possible types. In the case of isohedra with tetrahedral sym-
metry, these types will be described in some detail. Our description of the octahedral
case will be more cursory, and in the case of the icosahedral group only summary
results will be given here.

Section 2 of the paper is concerned with darts and their properties. Section 3 gives
a detailed description of the types of polyhedra considered, and also of the Mobius
nets of the relevant symmetry groups. The main result and its proof will be presented
in Section 4, together with more details in the tetrahedral case. Section 5 is devoted
to isohedra with the octahedral symmetry group, and Section 6 to those with the
icosahedral symmetry group. Section 7 contains comments and open problems.

2. Dart-shaped quadrangles

A dart V is any simple (that is, non-selfintersecting) planar non-convex quadrangle.
Each dart has one reflex angle (that is, angle greater than 180°); the vertex at that
angle is called the nadir of the dart, and the opposite vertex is called the apex. The
internal diagonal connects the apex and the nadir; it lies in the interior of the dart. The
external diagonal connects the side vertices of V; it lies in the exterior of the dart.

Each class of affinely equivalent darts can be characterized by two strictly positive
real parameters which we shall call the asymmetry o and the concavity y. These are
defined as follows, see Fig. 1. Let I be the intersection point of the external diagonal
of the dart /' and the line determined by its internal diagonal. With the labeling of
Fig. 1, in which 4 is the apex, C the nadir of V, and B,D the side vertices, we use
o(V) and (V') for the ratios of the lengths |BI|/|ID| and |CI|/|AI|, respectively. It is
immediate that (7)) and (V") are affine invariants and determine the affine class of V'
unambiguously. Note that y < 1, but the value of « is unrestricted and both o and 1/«
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determine the same affine class. One could, of course, select the smaller of o and 1/a,
but we find it advantageous not to do so. Darts V" with a(V)=1 are called symmetric
(since the internal diagonal lies in a line of mirror symmetry), and these play a special
role in the investigation. The following lemma is basic.

Lemma. Let a,b,c,d be rays from the origin O contained in an open halfspace, such
that no three are coplanar and c is contained in the interior of the convex hull
of {a,b,d}. Then for each point C € c and for each pair of positive reals o and 7y
with v < 1 there exist uniquely determined points A€ a, BEb, DEd such that the
quadrangle ABCD is a dart V with apex A and nadir C, satisfying a(V)=o, and

2(V)=7y.

Proof. For any 4 €a, let I be the intersection of the line through 4 and C with the
plane determined by b and d. Then the ratio |CI|/|AI| is a strictly monotone continu-
ous function of 4, which attains arbitrarily small positive values for 4 sufficiently far
from O on the ray a, and values arbitrarily close to 1 for 4 near O. Hence there is a
unique 4 such that |CI|/|4I| =y. Now consider, in the plane of b and d, the ratio
|BI|/|ID|. This is a strictly monotone continuous function of B, attaining both arbi-
trarily small positive values and arbitrarily large values. Hence it attains each of the
values o and 1/o for precisely one point B € b. Thus the dart is uniquely determined
by C, o and y. [

In particular, we observe that whatever rays are chosen, there exists a dart with ver-
tices A, B, C and D on the rays a, b, c,d which is symmetric, that is, « = 1. Moreover,
by similarity it follows that the darts corresponding to different choices of C € ¢, but
the same values of o and ), are all similar and lie in parallel planes.

3. Polyhedra and Mébius nets of symmetry groups

Although the study of polyhedra is as old as geometry, there is no general agreement
as to which collections of polygons should be called polyhedra. Various definitions are
appropriate according to the context. Here we shall adopt the following definition.

A finite collection of (plane) polygons (faces) will be called a usual polyhedron if
it satisfies the following properties:

(1) Each edge of a face is also the edge of precisely one other face. These two faces
are said to be incident with the edge, as well as with the endpoints of the edge,
which are vertices of the polyhedron.

(i1) All faces incident with a vertex form a single combinatorial cycle, in which ad-
jacent faces are both incident with the same edge.

(iii) Not all the faces lie in a plane.
(iv) The collection of faces is strongly connected, that is, any two faces are connected
by a chain of faces in which adjacent faces share an edge.
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It is sometimes useful to consider collections of polygons that fail to satisfy one or
more of the above conditions. We refer to these as unusual polyhedra. Among the
types of unusual polyhedra we shall encounter we mention here the following:

(1) Polyhedra with the vertex-pair property contain pairs of faces that share two dis-
tinct vertices but no edge. Note that the Kepler—Poinsot regular polyhedra {5/2,5}
and {5,5/2} have the vertex-pair property.

(i1) Polyhedra with the multicycle property have one or more vertices such that the
faces incident with each form two or more disjoint combinatorial cycles.

(iii) Compounds, that is, polyhedra which fail to satisfy the requirement of strong
connectivity.

In listing the dart-faced isohedra we shall generally indicate whether the polyhedron is
unusual, and if so, in which way. Additional comments on this topic will be found in
the last section.

Let % be a finite group of isometries of E*> which leave the origin O fixed. If & is
generated by reflections in a suitable set of mirrors (such a group is sometimes called
a Coxeter group) the Mobius net M(&) of & is the triangulation of the unit sphere
S centered at O determined by all the mirrors of . We shall be concerned primarily
with the tetrahedral group ¢ (with 6 mirrors and 24 elements), the octahedral group
O (with 9 mirrors and 48 elements), and the icosahedral group .# (with 15 mirrors and
120 elements). An example of such a net for the octahedral group appears in Fig. 2 of
Griinbaum [5], and a net for the icosahedral group in Fig. 7 of Coxeter and Griinbaum
[2]; all three are given in Fig. 1 of Shephard [9]. However, in the present context it
turns out to be more convenient, instead of the M0Obius nets themselves, to use their
stereographic projections. Some of these are shown in Fig. 2, the different nets for each
group arising from the choice of the center of projection.

The general idea for producing isohedra from Mobius nets is very simple, and it
is surprising that it appears not to have been used before the recent paper Griinbaum
[5] (see also Shephard [9], Coxeter and Griinbaum [2]). The application of the same
idea to isohedra with dart-shaped faces, and to triangle-faced isohedra, was considered
by the authors several years ago. Besides the present paper, these discussions led to
two others. The case of deltahedra (isohedra with equilateral triangles as faces) is
treated in Shephard [9], while isohedra with arbitrary triangles as faces are considered
in Griinbaum [6].

The steps of the construction of isohedra from Mobius nets are as follows. First
select a suitable family F of triangles from the Mobius net M (%) of the chosen group
& . Then choose a plane L that does not pass through O, and project F from O into
L to get a family [* of planar triangles; the union of these triangles is a polygonal
subset F' of L. Finally, create copies of F' by applying to F' each of the elements of &.
Clearly, the complex P generated by all these copies is invariant under & and, with
appropriate choices of [, the complex P will be a polyhedron, hence an isohedron.

However, a number of considerations have to be taken into account when this method
is applied.
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Fig. 2. Stereographic projections of the Mobius nets. Top row: M(#); middle row: M(Q); bottom row:
M(1).

(i) The family F has to be contained in an open hemisphere, and the plane L has to
be parallel to the bounding plane of such a hemisphere.

(ii) In general, P consists of 24 copies of F' for the tetrahedral group ¢, of 48 copies
of F in the case of the octahedral group (), and of 120 copies of F in the case of
the icosahedral group .#. These copies necessarily share edges as in a polyhedron,
but there may be other incidences or properties that make the polyhedron unusual.

(iii) In certain cases some elements of the group may map the set F' onto itself (that
is, the stabilizer of F' in the group may be non-trivial). Then the number of faces
and/or vertices will be smaller than in the general case. In particular, this happens
if F is balanced (that is, has mirror symmetry) and o= 1.

These statements will now be illustrated by examples. Suppose [ consists of a single
triangle in the octahedral net M ((). If the plane L is nearly perpendicular, but not per-
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DTI1 type T{2:2:3,3] A=4 DT2 type T[3;3;2,2] A=6 DT3 type J[3;3;3,3] A=4

Fig. 3. The three types of darts in the Mdbius net M( #) of the tetrahedral group #.

pendicular, to a 4-fold axis of the group O (that is, a ray incident with eight Mobius
triangles) then the 48 triangles of P constitute an isohedron isomorphic to the Catalan
hexakis octahedron (see, for example, Cundy and Rollett [3, Table II]). We note that
here, and throughout, all polyhedra in are considered to be 2-dimensional complexes; if
names of traditional polyhedra E> are used, it will always be assumed that we are deal-
ing with their boundary complexes. If L is perpendicular to a 4-fold axis, then P will
consist of six octuplets of coplanar triangles, namely, the barycentric subdivision of the
cube. On the other hand, if F consists of the eight triangles incident with a 4-fold axis
and L perpendicular to this axis, then F is a square, and P is the boundary of a cube.

4. The tetrahedral group

Starting with the Mobius net M(_#) of the tetrahedral symmetry group Z, it is easy
to verify that we can select from M(_#), in exactly three essentially different ways,
a family F of triangles that is contained in an open hemisphere and is bounded by
a dart-shaped spherical quadrangle O, the edges of which lic along great circles of
the net. These three darts, all of which are balanced, are shown in Fig. 3. The rays
through the four vertices of such a dart form a family of the type specified in the
Lemma of Section 2. Hence, for every choice of positive a and y with y < 1, there
exists a planar dart /' with these parameters, whose central projection is Q. The images
of V under the reflections of the tetrahedral group yield the isohedron. The values of
o affect not only the shape, but in many cases the combinatorial type as well. (We say
that two polyhedra have the same combinatorial type if they have the same incidences
between their elements, that is, vertices, edges and faces; notice that this refers to the
combinatorial structure, and not to the position of a point representing a vertex relative
to the sets representing edges or faces.) In particular, the value o =1 (the symmetric
case) often results in exceptional properties, and in unusual isohedra.

Below each part of Fig. 3 we show a type symbol for the dart. This is written
as JZ[r;s;t,u], where ¢ stands for “tetrahedral group”. The apex of the dart lies on
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Fig. 4. Isohedra with darts DT1 of type #[2;2;3,3]. (a) «=1/2, y=1/5. Six vertices of the transitiv-
ity class formed by the apexes are shown by solid dots; the six vertices at which the nadirs meet are
inside the polyhedron, and are not shown. Two of the four vertices formed by the one class of side ver-
tices of the darts are shown by hollow dots, while the other two, and all four of the other transitivity
class, are hidden. The thin lines indicate intersections of the faces of the polyhedron which are not edges.
One face is shown as the shaded area; the lighter part is inside the polyhedron. The same convention
is used in the other illustrations. The coordinates of the vertices of this face, starting with its apex, are:
(0,0,1), (3/8,3/8,—3/8), (0,1/5,0), (—3/16,3/16,—3/16). (b) o =1, y=1/5. The faces are balanced darts,
and the polyhedron has octahedral symmetry. The coordinates of the vertices of the emphasized face are
(0,0,1), (1/4,1/4,—1/4), (0,1/5,0), (—1/4,1/4,—1/4).

an r-fold symmetry axis, the nadir on an s-fold symmetry axis, and the side vertices
on t-fold and u-fold symmetry axes. It is convenient to put the integers ¢ and u in
lexicographic order. We also indicate the number A of spherical triangles that form
F. In many cases this is the number of intersections of a ray from the center of the
isohedron with the faces. It is thus analogous to the “density” that is often defined for
star-polygons.

Theorem 1. Each of the three types of spherical darts in the tetrahedral Mobius net
leads to isohedra with tetrahedral symmetry and dart-shaped faces, in which every
edge lies in a plane of mirror symmetry of the polyhedron. In each case, all values
of o and y < 1 are possible. The seven combinatorial types of isohedra which result
from darts are described below.

Darts DTI, type #12;2;3,3]. For spherical darts of this type, the resulting isohedra
are unusual with the vertex-pair property for every value of o and y < 1. All have the
same combinatorial type. If o # 1 the isohedron has 20 vertices and 24 faces. There are
two distinct transitivity classes of six vertices each at the 2-fold symmetry axes of the
polyhedron, and two transitivity classes of four vertices each at 3-fold symmetry axes.
In the symmetric case (o« =1) the isohedron has symmetric faces, octahedral symmetry
group, and the eight vertices at 3-fold symmetry axes form one transitivity class. Both
possibilities are illustrated in Fig. 4.
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(a) (b)

Fig. 5. Examples of isohedra with darts DT2 of type #[3;3;2,2]. (a) a=1/2, y=3/20. The
polyhedron has 24 faces and 20 vertices; the vertices are of one face at points (1,1,1),
(—18/17,0,0), (—3/20,—3/20,3/20), (0,—9/17,0). (b) « =1, y=3/20. The polyhedron has 12 faces and 14
vertices; the vertices of one face are at points (1,1,1), (—=12/17,0,0), (—3/20,—3/20,3/20), (0,—12/17,0).

Darts DT2, type #[3;3;2,2]. In the case a# 1 the isohedra are all of the same
combinatorial type, with 20 vertices and 24 faces. There are two distinct transitivity
classes of six vertices each on the 2-fold symmetry axes of the polyhedron, and two
transitivity classes of four vertices each on the 3-fold symmetry axes. In the symmetric
case (¢=1) the isohedra are of another combinatorial type, with 14 vertices and 12
faces. Examples of polyhedra of both types are shown in Fig. 5.

Darts DT3, type #[3;3;3,3]. For spherical darts of this type, the resulting isohedra
have all vertices on axes of 3-fold symmetry; they are unusual and have the vertex-pair
property. If o# 1 the isohedra are of two combinatorial types; one is represented in
Fig. 6 by (a) and (e), and the other in (c). In the symmetric case («=1) there are
also two combinatorial types, one shown in parts (b) and (f) of Fig. 6, the other in
(d). Types (c) and (d) are unusual in other ways as well, as described below.

Although all these isohedra are of one of the seven combinatorial types listed above,
many additional distinctions are possible if the shapes of the polyhedra are taken into
account. We have not attempted to distinguish these as there are no generally accepted
methods of classification applicable to nonconvex and selfintersecting polyhedra. We
illustrate this remark with reference to darts DT3. For each value of o there is a critical
value y* =9*(a) of y at which the appearance of the isohedron changes (see Fig. 6).
For smaller values of y the apexes of the faces are visible on the outside while the
nadirs are in the interior. For values of 7y larger than the critical value, the nadirs
are visible and the apexes are inside. The isohedra are unusual with the vertex-pair
property for all values of o and y, but polyhedra with y=7y*(a) have coplanar faces
as well, and if a# 1 then there are also multicycle vertices.

Another possible distinction of the shapes of the isohedra is illustrated by those with
darts DT2. Here the convex hull may have either 10 or four vertices; for each «, the
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(©) (d)

Fig. 6. Isohedra with darts DT3 of type #[3;3;3,3]. All vertices are on 3-fold axes of symmetry. The data
on the polyhedra are as follows: (a) o= 1/2, y=13/20. The polyhedron has 24 faces and 16 vertices; the ver-
tices of one face are (1,1,1), (9/17,—9/17,—-9/71), (3/20,3/20,—3/20), (—9/34,9/34,—9/34). (b) a=1,
y=3/20. The polyhedron has 12 faces and 12 vertices; the vertices of one face are (1,1,1), (6/17,—6/17,
—6/17), (3/20,3/20,—3/20), (—6/17,6/17,—6/17). (¢) o.=1/2, y=1/4. The polyhedron has 24 faces and
12 vertices; the vertices of one face are (1,1,1), (1,—1,—1), (1/4,1/4,—1/4), (—1/2,1/2,—1/2). (d)
o=1, y=1/3. The polyhedron has 12 faces and 8 vertices; the vertices of one face are (1,1,1), (21/13,
—21/13,-21/13), (7/20,7/20,—7/20), (—21/26,21/26,—21/26). (e) o= 1/2, y="7/20. The polyhedron has
24 faces and 16 vertices; the vertices of one face are (1,1,1), (21/13,—21/13,—-21/13), (7/20,
7/20,—7/20), (—21/26,21/26,—21/26). (f) o =1, y=9/20. The polyhedron has 12 faces and 12 vertices;
the vertices of one face are (1,1,1), (1,—1,—1), (1/3,1/3,—1/3), (—1,1,—1).
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transition occurs at a well-determined value of y. The two parts of Fig. 5 illustrate the
possibilities. If o =1, the transition occurs for y=3/7.
Clearly, many other distinctions could be made.

5. The octahedral group

There are 23 different kinds of darts possible in the Mdobius net of the octahedral
group. They are shown in Fig. 7. Because of the large number of darts it is impractical
to present as detailed an account of the isohedra as we did for the tetrahedral group
in the previous section. However, we shall mention some aspects which do not occur
in the tetrahedral case.

In the octahedral case, the spherical darts need not be balanced. This occurs in
16 cases, because only seven darts are balanced, namely DO9, DO11, DO12, DO14,
DO15, DO18 and DO22 in the notation of Fig. 7.

The other difference is that here the collection of polygons obtained by the action
of the group can, in certain cases, be an unusual polyhedron in that it is not strongly
connected. Hence, according to a widely accepted terminology, we obtain not one
isohedron, but a compound of two isohedra. This happens in three of the balanced
cases, namely for darts DO9, DO11, DO22. Each of the resulting compounds is the
union of one of the isohedra with tetrahedral symmetry and its reflection in the origin.
Examples of isohedra of the four other balanced types are shown in Fig. 8. In Fig. 9
we show a few examples of isohedra arising from asymmetric darts. We note that
for asymmetric darts the values o and 1/x yield, in general, polyhedra of different
appearance; this is illustrated in Fig. 10.

6. The icosahedral group

In the icosahedral Mobius net there are 136 distinct darts, of which 26 are bal-
anced. Clearly there are too many to show in diagrams analogous to Figs. 3 and 7,
or to describe in detail. A listing of types would not be very informative, so we shall
here describe a straightforward procedure by which all these darts can be determined.
Naturally, the same method can be used for the tetrahedral and octahedral nets.

We are looking for darts for which the apex is on an r-fold symmetry axis, and
the nadir is on an s-fold symmetry axis. To begin with, suppose that »=2. In the
appropriate projected Mobius net (that is, the one in which a point corresponding to
an axis of 2-fold symmetry lies at the center 4’ of the diagram in Fig. 11) choose two
non-collinear rays m; and mj, of the net meeting at 4’, and let R denote the region
(with angle less that 180°) bounded by these two rays. In the simple case (r=2)
which we are considering there are clearly four choices for m; and my, but as these
are equivalent, only one needs to be considered. Any vertex of the net lying in the
interior of R may be chosen to be the nadir of the dart; label it C’. It is easy to see
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DOl type 3[2;2;3,4] A=10  DO2type O[2;2;44] A=6

DO4 type 3[2;3;3,4] A=9 DOS type 9[2;3;44] A=7 DO6 type 3[3;2;2,3] A=12

(a)
\>/< %
\\\_>’

DO7 type ([3;2;34] A=5 DO8 type 3[3;2;4,4] A=11 DO9 type (3[3;3;3,3] A=8

I —

-
S

3 NN J
~ j\'\ _— \__/K\#//

DO10 type I[3;3;34] A=6 DOIltype O[3;3:44] A=12 DOI2type O[3:4;22] A=14
(b)

Fig. 7. The 23 types of dart-shaped quadrangles in the octahedral Mébius net, arranged lexicographically by
their type symbol.
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(2) (h)

Fig. 8. Examples of isohedra having octahedral symmetry, with dart-shaped faces arising from balanced
darts, and with edges in planes of symmetry. (a) DO12. «=1/2, y=1/3. The polyhedron has 48 faces
and 38 vertices; the vertices of one face are at points (1,—1,1), (0,3/2,—3/2), (0,1/3,0), (—3/4,3/4,0).
(b) DOI12. =1, y=1/3. The polyhedron has 24 faces and 26 vertices; the vertices of one face are at
points (1,—1,1), (0,1,—1), (0,1/3,0), (—1,1,0). (c) DO14. a=1/2, y=1/4. The polyhedron has 48 faces
and 26 vertices; the vertices of one face are at points (1,—1,1), (0,1.,0), (0,0,0.25), (—0.5,0,0). (d)
DO14. =1, y=1/3. The polyhedron has 24 faces and 20 vertices; the vertices of one face are at points
(1,-1,1), (0,1.,0), (0,0,0.333333), (—1.,0,0). (¢) DO15. o =1/2, y=1/4. The polyhedron has 48 faces
and 38 vertices; the vertices of one face are at points (0,0,1), (1,0,—1), (1/4,1/4,—1/4), (0,1/2,—1/2).
(f) DO15. a =1, y=1/4. The polyhedron has 24 faces and 26 vertices; the vertices of one face are at points
(0,0,1), (2/3,0,—2/3), (1/4,1/4,—1/4), (0,2/3,—2/3). (g) DOI18. o.=1/2, y=1/2. The polyhedron has 48
faces and 26 vertices; the vertices of one face are at points (0,0, 1), (3/2,0,0), (1/3,1/3,1/3), (0,3/4,0).
(h) DOI18. a=1, y=1/2. The polyhedron has 24 faces and 14 vertices; the vertices of one face are at
points (0,0, 1), (1,0,0), (1/3,1/3,1/3), (0, 1,0).
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(a) (b) (c)

Fig. 9. Several of the isohedra that arise from unbalanced darts in the octahedral Mdobius net. (a) DO3.
oa=1/2, y=1/3. The polyhedron has 48 faces and 40 vertices; the vertices of one face are at points
(1,0,1), (=3/2,3/2,=3/2), (—1/3,1/3,1/3), (=3/4,0,3/4). (b) DO13. x=1/2, y=1/2. The polyhedron
has 48 faces and 28 vertices; the vertices of one face are at points (1,—1,1), (3,3,-3.), (0,1.,0), (—3,3,0).
(c) DO17. The polyhedron has 48 faces and 28 wvertices; the vertices of one face are at points
a=1/2, y=1/2. (0,0,1), (0,—3,0), (1/4,—1/4,1/4), (3/4,3/4,—3/4).

Fig. 10. Both isohedra shown have arisen from asymmetric darts of type DO1, with y =1/3. Their faces are
affinely equivalent, and correspond to o =1/2 and o =2, respectively.

that if s=2, so that C’ lies on two circles, there is exactly one dart with apex 4’,
nadir C’ and two edges lying in m; and m,. If s=3, there exist exactly three such
darts, and if s =5, there are 10 such darts. One of the latter is indicated in Fig. 11. In
our example with » =2, the region R contains in its interior six points on 2-fold axes,
three points on 3-fold axes and one point on a 5-fold axes. Hence there are a total of

6x1+3x3+1x10=25

darts with r=2.

An analogous procedure can be applied for darts with ¥ =3 or 5, using the center
A" of an appropriate projection of the Mdébius net as the apex of the dart we are
constructing. When » =3 there are three essentially different choices for the region R,
and if =35 there are six essentially different choices. We examine each of these in
turn. After choosing the nadir C’ the dart can be completed as above, but the number
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Fig. 11. An illustration of the counting procedure outlined in the text. To avoid clutter, the vertices have
not been labeled. The point 4’ is at the center of the diagram.

of ways in which this can be done depends on C’ and has to be determined in each
case. In particular, the number of possibilities is reduced if C’ lies on one of the lines
of the net that pass through A’, as well as in some other circumstances. Examining all
possible choices for C’ for a given A’ we obtain the following results:

For the three choices of the regions R in case r =3, there are altogether

9 different choices of C’ on 2-fold axes, yielding 9 darts;

8 different choices of C’ on 3-fold axes, yielding 20 darts;

4 different choices of C’ on 5-fold axes, yielding 16 darts;
hence there are 45 different darts with r=3.

Similarly, for the six choices of the regions R in case » =5, there are altogether

10 different choices of C’ on 2-fold axes, yielding 10 darts;

15 different choices of C’ on 3-fold axes, yielding 16 darts;

8 different choices of C’ on 5-fold axes, yielding 40 darts;
hence there are 66 different darts with r=35.

It follows that there are altogether 25445466 = 136 different darts in the icosahedral
Mobius net.

A slight variant of the procedure just described leads to an enumeration of balanced
darts. We find that there are none if » =2; for » =3 there are ten, and for » =5 there
are sixteen, for a total of 26 balanced darts in the icosahedral Mdbius net.

Diagrams of most of these polyhedra are very complicated, and tend to be unintel-
ligible. Hence we show in Fig. 12 just one simple example, with a balanced dart, and
with 60 faces that have reflective symmetry.
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Fig. 12. An example of a dart-faced isohedron with icosahedral symmetry is shown in (a); it is obtained
from the dart indicated in the Mdbius net in (b).

7. Comments

7.1. Suppose a dart F in the Mobius net .# is of type .#[r;s;t,u] and has apex 4
and nadir C. Then the following facts are easily verified. There is a unique dart F’ of
type 4 |s;r;t,u] with apex C and nadir 4, whose edges lie in the same great circles as
the edges of F, see Fig. 13. Moreover, let the convex kernel K of F denote the convex
quadrangle contained in F' and determined by the great circles that contain the edges
of F. If the vertices of K lie on axes of multiplicities 7, p,s,q (in a cyclic order), then
the other pair p,q of axes also determines a pair of darts, of types .#[p;q;t,u] and
Mq; p;t,u]. Naturally, these four darts need not be all different. We have found this
connection between darts and convex quadrangles very useful in checking our results,
ensuring that no possibilities have been overlooked, especially in the icosahedral case.
We note in passing that there are 42 different convex quadrangles in the icosahedral
case; in the tetrahedral case there are two convex quadrangles, and in the octahedral
case nine.

7.2. The isohedra with dart-shaped faces described above are not the only kinds
possible. Another family of isohedra with dihedral symmetry also exists. The idea
should be clear from the illustrations in Fig. 14. Let P be a regular n-gon centered at
O. Let Q be a right prism whose base is P and whose top is the regular n-gon P’
centered at O’. Choose any three vertices of P, say 4, B and D, which define a triangle
with O in its interior. Let B’ and D’ be the vertices of P’ corresponding to (that is,
vertically above) the vertices B and D of P, and suppose the triangle AB’D’ cuts OO’ in
C. Then one face F of the isohedron is AB'CD’ (with apex 4 and nadir C) and the other
faces are the images of this under the symmetries of Q (that is, the dihedral group of
order 2n). In contrast to the isohedra described above, members of this family depend
both on » and on another integer parameter d, which is analogous to the “density”
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Fig. 13. An illustration of the quadruplets of darts that are associated with each other. In the instance shown
the four darts are all different. The darts are: ABCD, EDFB’, CB’AD' and FD'EB.

(b)

Fig. 14. Isohedra with dart-shaped faces and dihedral symmetry group D,. (a) and (b) are views of the
same polyhedron from side and from above; the polyhedron corresponds to n=35, d =2.

used for star polygons. Given these two integers, the isohedron is determined uniquely
up to affinity. In some cases this isohedron is unusual, a compound of two parts each
with the symmetry of an antiprism and itself an isohedron with dart-shaped faces.
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Fig. 15. The dart-faced isohedron shown by Briickner (1900). It was dihedral symmetry, and corresponds to
n=3,d=1.

Conjecture 1. There are no usual isohedra with dart-shaped faces beyond the following:

(1) Isohedra with tetrahedral, octahedral or icosahedral symmetry group and edges
in planes of mirror symmetry;

(i1) The isohedra with dihedral symmetry group mentioned above, and illustrated in
Fig. 14, and their parts in the unusual case.

Note that the edges of the isohedra in (ii) do not lie in planes of mirror symmetry;
each face is mapped into its neighbor by a half-turn about an axis passing through the
midpoint of the longer common edge.

7.3. Tt is well known that every quadrangle (including darts) can be used to tile the
plane isohedrally. However, it is also known that no bounded convex region in the
plane can be tiled by darts—not even if they are allowed to have different shapes (see
Schwenk [8], Gale [4]). In Griinbaum and Shephard [7] it was proved that there is no
acoptic isohedron (that is, one free of selfintersections) with dart-shaped faces. As we
have seen, if selfintersections are allowed, dart-faced isohedra exist. However, there
are still some open questions, and we suggest the following conjecture which would
greatly strengthen the result just quoted by admitting non-isohedral polyhedra as well
as polyhedra of any genus:

Conjecture 2. There is no acoptic polyhedron with dart-shaped faces.

7.4. 1t is remarkable that we found only one reference to a dart-faced polyhedron
in the literature. On p. 105 of Briickner [1], he mentions that the isohedron shown in
Fig. 21 of his Plate X (see Fig. 15) has as faces six quadrangles, each of which has
a reflex angle. However, he neither asks any questions about the existence of other
dart-faced polyhedra, nor does he offer any comments on the subject.
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(a)

Fig. 16. (a) A triangle with a quadrilateral hole, in the octahedral Mdbius net; it can be used to construct
self-intersecting isohedral holyhedra with 24 faces. (b) A holyhedron of this type.

7.5. The only paper of which we are aware that deals with isohedra having all edges
in planes of symmetry is Unkelbach [10]. In this paper he discovered a remarkable
acoptic hexecontahedron with rhombic faces. This can easily be obtained using the
method of Mdbius nets described here. Other applications are in the papers Griinbaum
[5], Coxeter and Griinbaum [2], Shephard [9] and Griinbaum [6].

7.6. Some years ago J.H. Conway asked whether there exist any %ol yhedra, that is,
polyhedra which have “a hole in every face”. More specifically, he asked that each face
has one or more holes such that each hole (together with its boundary) is contained in
the interior of the face. A very ingenious and tremendously complicated affirmative an-
swer was recently given by Vinson [11]. The polyhedron is acoptic, as was, apparently,
implied in the original question. However, if one admits selfintersecting polyhedra then
it is easy to construct isohedra with faces that have holes, by using Mdbius nets. In
Fig. 16 we show in the Mobius net a triangular face with a quadrangular hole in its
interior, with all edges along the lines of the net. Since the face has a line of symmetry,
the isohedron generated from it will have only 24 faces. By a similar construction in
the icosahedral Mobius net we can construct an isohedral polyhedron in which each
face has three disjoint holes. We conjecture that there is no such polyhedron with faces
that have more than three holes.
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