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Abstract. We describe three hexacontahedra in which the faces are rectangles, all equiv-
alent under symmetries of the icosahedral group and having all edges in the mirror planes
of the symmetry group. Under the restriction that adjacent faces are not coplanar, these are
the only possible polyhedra of this kind.

1. Introduction

In a recent paper [2] we described two face-transitive polyhedraP1 and P2, with non-
square rectangular faces and octahedral symmetry, each edge of which lies in a mirror
plane of the polyhedron. We indicated then that more complicated polyhedra with similar
properties will be presented later. The aim of this note is to describe three polyhedra
with icosahedral symmetry, in which all faces are non-square rectangles equivalent under
symmetries of the polyhedron, and in which each edge is in a plane of mirror symmetry.
Moreover, we restrict attention to polyhedra in which there are no coplanar faces. As
in [2], the polyhedra described here can lead to other isohedra with rectangular faces if
subdivision of faces or other modifications are allowed; these are briefly discussed in
Section 6. However, the three polyhedra described below and denoted byP#1, P#2 and
P#3 are the only ones that possess all the properties just mentioned.

2. The Polyhedra

Each of the three polyhedra has sixty faces and is thus a hexacontahedron; each has
self-intersections of the kind familiar from the Kepler–Poinsot regular polyhedra. As
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(a) (b)

Fig. 1. (a) A skeletal view of the rectangle-faced hexacontahedronP#1= {5,3}& {3,5}. The edges of one
face are boldly drawn. Its vertices are those of a great stellated triacontahedron, with vertices of different
orbits shown by solid dots of two sizes. (b) A perspective view of a model of the hexacontahedronP#1 =
{5,3}& {3,5}. The three visible parts of one face are shown in black. It is the face emphasized in the skeletal
view.

(a) (b)

Fig. 2. (a) A skeletal view of the rectangle-faced hexacontahedronP#2= {5, 5
2}& { 52 ,5}. The edges of one

face are boldly drawn. Its vertices are those of a small stellated triacontahedron, with vertices of different
orbits shown by solid dots of two sizes. (b) A perspective view of a model of the hexacontahedronP#2 =
{5, 5

2}& { 52 ,5}. The only visible part of one face is shown in black. It is the face emphasized in the skeletal
view.
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(a) (b)

Fig. 3. (a) A skeletal view of the rectangle-faced hexacontahedronP#3= {3, 5
2}& { 52 ,3}. The edges of one

face are boldly drawn. Its vertices are those of a rhombic triacontahedron, with vertices of different orbits shown
by solid dots of two sizes. (b) A perspective view of a model of the hexacontahedronP#3= {3, 5

2}& { 52 ,3}.
The three visible parts of one face are shown in black. It is the face emphasized in the skeletal view.

may be seen from Figs. 1–3, the polyhedra are quite complicated, and the diagrams are
of little help in visualizing them or investigating their properties. Hence in Section 3 we
describe three methods of construction of these polyhedra, which facilitate their study
in different ways.

Each of the three hexacontahedra is shown in skeletal view as well as in perspective
view of a cardboard model. For greater clarity, vertices are shown by solid dots. For each
polyhedron, the vertices form two orbits under isometric symmetries; the two types are
indicated by dots of different sizes. For additional intelligibility, in the skeletal view the
edges of one face are heavily drawn, while in the views of the models the parts of one
face that are visible from the outside are shown in black. Additional information about
these three hexacontahedra is given in Sections 4 and 5.

3. Three Constructions for the Hexacontahedra

Among the various ways to describe the three rectangle-faced hexacontahedra, we present
here three methods for their construction.

3.1. For the first method, we observe that the six regular polyhedra with icosahedral
symmetry form three reciprocal pairs:

{5,3} and{3,5}, {5, 5
2} and{ 52,5}, { 52,3} and{3, 5

2}.
When the polyhedra in such a pair are actually reciprocal with respect to a concentric
sphere, each pair of opposite edges of one polyhedron is parallel to a pair of edges of the
other that lie in the midplane of the first pair of edges. If, moreover, the reciprocating
radius is adjusted so that both the polyhedra have the same edge length, then quadruplets
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Fig. 4. The first construction ofP#1 = {5,3}& {3,5}, based on reciprocal polyhedra{5,3} and{3,5}. In
order to avoid crowding the diagram, here and in Figs. 5 and 6, only one “zone” of four rectangles is indicated.
Each edge of{5,3} participates in one such a zone, and so does each edge of{3,5}. The other edges of the
rectangles determine twelve zones of five faces each.

of edges as just described determine a zone or “tunnel”, the walls of which are four
congruent rectangles. This zone is bounded by two quadruples of edges, each forming a
rhomb, and each edge has one vertex in each of the polyhedra. Since each polyhedron has
thirty edges, there are fifteen such zones, each formed by four rectangles: sixty rectangles
altogether. These sixty congruent rectangles are the faces of an isohedron, and the three
pairs of reciprocals yield three such hexacontahedra which we designate

P#1= {5,3}& {3,5}, P#2= {5, 5
2}& { 52,5}, and P#3= { 52,3}& {3, 5

2}.
This construction is illustrated in Figures 4–6, in each of which only one zone of four
rectangles is shown.

3.2. For the second method we start with the net of M¨obius triangles for the icosa-
hedral group [1, p. 111], see Fig. 7; as is well known, this is the partition of the sphere

Fig. 5. The first construction ofP#2= {5, 5
2}& { 52 ,5}, based on reciprocal polyhedra{5, 5

2} and{ 52 ,5}.
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Fig. 6. The first construction ofP#3= {3, 5
2}& { 52 ,3}, based on reciprocal polyhedra{3, 5

2} and{ 52 ,3}.

by the planes of mirror symmetry of the icosahedral group. We search for (spherical)
quadranglesABCD, the sides of which are arcs of the great circles forming the net, and
which themselves have mirror symmetry in one of the midlines, say the one bisecting
AB andCD, see Fig. 8. On the rays from the centerO of the sphere through the points
C, D we locate pointsC∗, D∗ in such a way thatOC∗ = OD∗ andAB= C∗D∗. Then
the planar quadrangleABC∗D∗ is a rectangle, all sides of which are in mirrors of the
icosahedral group. The action of the group on this rectangle creates a polyhedron of the
type we are interested in.

This method of construction can be used to find the complete list of rectangle-faced
polyhedra; it shows, in particular, that the three polyhedra described here are the only
ones satisfying the criteria specified in the Introduction. More details about this use of
Möbius nets appear in Section 6 below.

Fig. 7. The icosahedral M¨obius net on the sphere. The sizes of the sides of each triangle of the M¨obius net are
λ = 1

2 arctan 2= 31.7174744◦, µ = 1
2 arcsin2

3 = 20.90505745◦, andχ = π/2− λ− µ = 37.37736814◦.
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Fig. 8. (a) One face ofP#1 = {5,3}& {3,5}, (b) P#2 = {5, 5
2}& { 52 ,5} and (c)P#3 = { 52 ,3}& {3, 5

2}, all
shown here in their projectionABCDto the icosahedral M¨obius net.

3.3. For the third method of construction we start with the three rhombic triaconta-
hedra: the convex, the small stellated and the great stellated triancontahedra (see Plate 1
and Fig. 6.4C and D in [1], or pp. 121, 125, 126 in [3]). In each of these polyhedra
every face can be paired with a congruent and parallel face, the two faces being related
by reflection in the plane parallel to them and passing through the center of the polyhe-
dron. Hence each such pair determines a “tunnel”, the walls of which are four congruent
rectangles; each rectangle has one edge in each of the two faces, and a pair of parallel
edges joining the endpoints of these edges (see Figs. 9–11). Since each edge of the
triacontahedron is in a plane of mirror symmetry of the polyhedron, the sixty rectangles
that result from the fifteen pairs of parallel faces form an isohedral hexacontahedron of
the kind considered. Specifically,P#1 is obtained from the great stellated triacontahe-
dron, P#2 from the small stellated triacontahedron, andP#3 from the convex rhombic
triacontahedron. Clearly, the tunnels described here coincide with the zones of the first
construction; however, the logic of the two methods of construction is quite different.

Fig. 9. Construction ofP#1 from the great stellated triacontahedron. To avoid clutter, here and in Figs. 10
and 11, only the four walls of the “tunnel” determined by one of the fifteen pairs of the parallel faces of the
triacontahedron are shown.



Face-Transitive Polyhedra with Rectangular Faces and Icosahedral Symmetry 169

Fig. 10. Construction ofP#2 from the small stellated triacontahedron.

For each of the three hexacontahedra, the sets of parallel edges of the rhombic tri-
acontahedra used in the third construction determine twelve zones of five rectangles
each. These are somewhat harder to visualize, but can easily be perceived using suitable
models.

4. Numerical Properties

As we have seen, each of the three hexacontahedra has 60 faces and 60+ 60 edges (of
two lengths).P#1 andP#3 have 20+ 12 vertices, respectively 6-valent and 10-valent.
The twenty vertices are each surrounded by six rectangular faces, so that the vertex
figure is an equilateral hexagon of density 2 with alternate angles of two sizes. The
twelve vertices are each surrounded by ten rectangular faces, so that the vertex figure is
an equilateral decagon of density 3 (forP#1) or 4 (forP#3).

Fig. 11. Construction ofP#3 from the convex rhombic triacontahedron.
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On the other hand,P#2 has 12+ 12 vertices, all 10-valent; each vertex figure is an
equilateral decagon, of density 3 for one kind of vertex and 4 for the other.

For each of the three hexacontahedra, the density is given by Cayley’s formula [1,
equation 6.42 on p. 104]. Then forP#1 we find that the density is

1
2(3 · 12+ 2 · 20− 120+ 60) = 8;

for P#2 it is
1
2((3+ 4) · 12− 120+ 60) = 12;

and forP#3 it is
1
2(4 · 12+ 2 · 20− 120+ 60) = 14.

When regarded topologically as surfaces [1, p. 10], all three hexacontahedra are
orientable. PolyhedraP#1 andP#3 each have Euler characteristic

2− 2g = 32− 120+ 60= −28

and thus genusg = 15, while P#2 has characteristic

2− 2g = 24− 120+ 60= −36

and genusg = 19.

5. Metric Properties of the Hexacontahedra

The metric properties of the hexacontahedra are most easily derived from the construction
based on rhombic triacontahedra. For additional information about these polyhedra and
their history see p. 115 in [1], and the references given there.

The vertices of the great stellated triacontahedron can be taken at the eight points
(±1,±1,±1) with all choices of signs, and the twelve points(±τ−2,±1,0) with all
choices of signs and cyclic permutations. From this it is easy to calculate that (in the
notation of Fig. 8) the ratioBC∗/ABof sides of the rectangular faces ofP#1 is

1
2 · 51/4τ 3/2 = 1.538841768587626. . . .

Similarly, the twenty-four vertices of the small stellated triacontahedron have coordi-
nates(±τ,±1,0) and(±1,±τ−1,0) with all choices of signs and cyclic permutations.
Hence the ratioBC∗/ABof the sides of the rectangular faces of the polyhedronP#2 is

1
2 · 31/2 = 0.866025403784439. . . .

Finally, eight vertices of the convex rhombic triacontahedron are at the points(±1,±1,
±1) with all choices of signs, and the other twelve are at the points(±τ−1,±τ,0) with
all choices of signs and cyclic permutations. This shows that the rationBC∗/ABof sides
of the faces ofP#3 is

1
2 · 51/4τ−3/2 = 0.3632712640026805. . . .
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6. Comments

As mentioned in [2], isohedra with non-square rectangles as faces do not seem to have
been considered by other authors. It also seems that although M¨obius nets have long
been used in the study of uniform and other isogonal polyhedra, their applicability to
investigations of isohedra seems not to have been noticed prior to [4].

The complete enumeration of rectangle-faced isohedra with all edges in mirrors of
the icosahedral symmetry group can be based on the following simple observation (see
[4]): If Q is a spherically convex quadrangle, the cone generated byQ with apex at the
center of the sphere can be intersected by a plane in such a way that the intersection
is a parallelogram; moreover, all such planes are parallel, and hence the parallelograms
are mutually homothetic and the parallelogram is uniquely determined up to size. The
proof of this assertion reduces at once to showing that for every point inside an angle
(pointed cone) in the plane there is a unique chord that has the point as its midpoint.
Clearly, the center of the parallelogram will be on the line of intersection of the two
planes determined by the diagonals of the spherical quadrangle. The precise shape of
the parallelogram can be easily determined, either trigonometrically or using numerical
calculations.

With very little effort it is possible to verify that in the icosahedral M¨obius net there are
just forty-one different convex quadrangles. Precisely six of the resulting parallelograms
are rectangles: the three shown in Fig. 8, and additional three which are obtained from
them by taking the halves determined by midlines that are mirrors. These last three lead to
polyhedra, the 120 faces of which are rectangles that are coplanar in pairs, and therefore
are easily obtainable from our three hexacontahedra. The fact that they are isohedra with
120 faces is of some interest since it shows that polyhedra of this kind need not have
triangular faces.

The arguments just made show that our enumeration of rectangle-faced isohedra with
icosahedral symmetry is complete if we restrict attention to polyhedra of the Kepler–
Poinsot type. On the other hand, if faces that coincide as sets of points but are distin-
guished combinatorially (for example, by being “red” or “green”, with only different-
colored faces sharing edges, or by some other means), then many other possibilities
arise; these are not pursued here.

The rectangle-faced icositetrahedronP1 described in [2]1 and constructed there by the
analogue of the first method used here, can also be obtained by the other two approaches.
The construction using M¨obius nets appears in a more general context in [4] and yields
both icositetrahedraP1 and P2 from [2]. On the other hand, the “tunnel” construction
applied to the rhombic dodecahedron yieldsP1. Here each rectangle joins an edge of
the octahedron{3,4} to a parallel edge of one of the two tetrahedra which constitute the
stella octangula{4,3}[2{3,3}]{3,4} (see p. 48 in [1]). So a suitable analogue forP1 to
the symbol{5,3}& {3,5} could be 2{3,3}& {3,4}.

1 The skeletal diagram of the icositetrahedronP1 shown in the left part of Figure 2 of [2] was distorted
during printing; it should have the same dimensions as the perspective view in the right part of this diagram.
The labels (a) and (b) for the two parts were lost during the production, as were the ones in Figure 4 of [2].
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