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1. Introduction

Regular (or Platonic) polyhedra have been studied since antiquity, and many other
kinds of polyhedra with various symmetry properties have been investigated since then.
These include the traditional Archimedean polyhedra (regular-faced with congruent ver-
tex �gures), isohedra (polyhedra with faces all equivalent under symmetries of the
polyhedron), isogonal polyhedra (all vertices of which are equivalent), uniform poly-
hedra (regular-faced isogonal polyhedra), Kepler–Poinsot regular polyhedra, and others.
The study of rhombohedra (isohedra with rhombic faces) started with Kepler, and con-
tinued in more recent times. However, there has been no complete enumeration, or
classi�cation, of such polyhedra. In the present paper we shall make a beginning of
such a systematic investigation. For reasons of time and space we restrict the consider-
ation to polyhedra with the octahedral symmetry group, but admit any parallelograms
as faces; the analogous but much more numerous polyhedra with icosahedral symmetry
will be discussed elsewhere.
Another restriction imposed in the present investigation concerns the kinds of objects

we shall accept as ‘polyhedra’. As is quite generally accepted, we treat polyhedra as
collections of planar polygons (parallelograms in the present case), such that edges are
shared by two faces, faces incident with any one vertex form a single circuit, and the
set of faces is strongly connected. We do not insist that distinct faces determine distinct
planes, and we do not object to overlaps among faces. We also admit the possibility
of several vertices being represented by the same point, as long as the circuits of
faces incident with each are disjoint. (We shall comment on this permissiveness in the
concluding section.) It seems that this class of polyhedra is wide enough to encompass
all the traditional families mentioned above, without leading to some of the ‘strange’
possibilities described in [7,11] for polyhedra of more general kinds.
A �nal restriction on the polyhedra considered here is that every edge of the poly-

hedron is to be contained in a mirror, that is, a plane of reective symmetry of the
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polyhedron. The e�ect of this restriction will be discussed in the last section; at the
moment, it should su�ce to note that all rhombohedra (except some a�ne images of
the cube) considered in the literature have this ‘edges-are-mirrors’ property.
The result of our enumeration is:

Theorem. There are precisely nine parallelogram-faced isohedra with octahedral
symmetry; all edges of which are contained in mirrors.

More precisely, two of the polyhedra have square faces, three have nonsquare rect-
angles, two have nonsquare rhombic faces and two have nonrhombic, nonrectangular
parallelograms as face. All these polyhedra are described below, and graphic represen-
tations are shown in Fig. 1. While it is clear that the polyhedra we describe satisfy
the imposed conditions, the more interesting part of the proof of the Theorem is the
argument showing the completeness of the enumeration. The method appears to be
applicable in a variety of other cases as well.

2. Proof of the Theorem

M�obius nets have been invented for the study of symmetries of polyhedra, and have
been used, among other things, to describe all uniform polyhedra, as well as in the
investigation of more general isogonal polyhedra. Somewhat unexpectedly, they seem
not to have been applied so far to the investigation of isohedra. As we show here, they
are very appropriate for this purpose as well.
The M�obius net of the octahedral symmetry group consists of the 48 triangles into

which the planes of mirror symmetry of the regular octahedron divide a sphere centered
at the center of the octahedron. Clearly, the central projection onto a sphere centered
at the center of the polyhedron will map every face of a parallelogram-faced isohedron
all edges of which are mirrors onto a union of M�obius triangles. Moreover, this union
will be a spherically convex quadrangle consisting of two or more M�obius triangles.
It is easy to obtain a list of such quadrangles; as it turns out, there are precisely the
nine possibilities which are shown in Fig. 2.
The crucial next step is the following simple observation: If Q is a spherically

convex quadrangle, and if C is the cone generated by Q, with apex at the center of
the sphere, then there is a plane H which intersects C in a parallelogram; moreover,
all such planes are parallel, and hence the parallelograms are mutually homothetic so
that the parallelogram is unique up to size. The proof of this assertion reduces at once
to showing that for every point inside an angle (pointed cone) in the plane there is a
unique chord that has the point as its midpoint. Clearly, the center of the parallelogram
will be on the line of intersection of the two planes determined by the diagonals of the
spherical quadrangle. The precise shape of the parallelogram can be easily determined,
either trigonometrically or using numerical calculations.
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Fig. 1. The nine parallelogram-faced isohedra with octahedral symmetry and edges in planes of mirror
symmetry. For clarity, one face of each polyhedron is emphasized by heavy edges. For polyhedra P2, P5
and P7 points marked by solid dots (and their images under symmetries of the polyhedron) represent two
distinct vertices each.

This observation implies that for every one of the nine quadrangles qj in Fig. 2 there
is a parallelogram whose central projection is the quadrangle in question. Reections of
this parallelogram in the planes of symmetry of the octahedron generate a �nite family
of parallelograms, a polyhedron Pj, which is one of the polyhedra we are enumerating.
We now briey describe each of them, and supply the following data: the symbol in
square brackets, which is the valence cycle of each face; the numbers f; e, and v of
faces, edges and vertices; the density d and the genus g of the polyhedron; and details
about the shape of the faces.
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Fig. 2. The nine convex quadrangles which are unions of triangles in the octahedral M�obius net.

q1: The polyhedron P1 is obtained by subdividing each face of a cube into four
squares. Symbol: [3; 4; 4; 4]; f = 24; e = 48; v = 6 + 8 + 12 = 26; d = 1; g = 0. The
faces are squares.
q2: The polyhedron P2 has eight points each of which represents two distinct ver-

tices. As a consequence, certain segments represent two edges of the polyhedron each.
Symbol: [4; 62 ; 6;

8
3 ]; f= 48; e= 96; v= 6+ 8+ 8+ 12 = 34; d= 3; g= 8. The faces

are parallelograms with sides 2 and
√
3, and diagonals 2 and

√
11; the acute angles

are 54:735610◦.
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q3: This polyhedron P3 is the rhombic dodecahedron. Symbol: [3; 4; 3; 4]; f = 12;
e = 24; v = 6 + 8 = 14; d = 1; g = 0. Faces are rhombi, with ratio of diagonals

√
2

and acute angles 70:528780◦.
q4: The faces of P4 are 2-by-1 rectangles, obtained by dividing into two each face

of a cube, in the two possible ways. Hence quadruplets of faces are coplanar. It should
be noted that the vertices at midpoints of the edges of the cube are incident with just
four faces, although two more faces contain these points. Symbol: [4; 4; 62 ;

6
2 ]; f= 24;

e = 48; v= 8 + 12 = 20; d= 2; g= 3.
q5: The faces of P5 are rectangles, coplanar in pairs. Three vertices of the polyhedron

project onto each of the octahedral vertices of the M�obius net; two of these vertices
are represented by the same point. Symbol: [4; 4; 62 ;

8
3 ]; f=48; e=96; v=6+6+6+

8 + 12 = 38; d= 5; g= 6. Faces are rectangles, with sides in ratio
√
3=
√
2.

q6: The faces of P6 are parallelograms which overlap in their central parts. Symbol:
[4; 83 ; 4;

8
3 ];f=24; e=48; v=6+12=18; d=3; g=4. Faces are parallelograms with

sides 1 and
√
3, and diagonals

√
2 and

√
6; the acute angles are 54:735610◦.

q7: Polyhedron P7 has rhombic faces, triplets of which are coplanar. Pairs of vertices
are represented by the same point. Symbol: [3; 83 ; 4;

8
3 ]; f=24; e=48; v=6+6+8=

20; d= 4; g= 3. Faces are rhombi, with ratio of diagonals
√
3 and acute angles 60◦.

q8: Polyhedron P8 is the cube. Symbol: [3; 3; 3; 3]; f=6; e=12; v=8; d=1; g=0.
q9: The faces of P9 are rectangles. Symbol: [ 62 ;

6
2 ;
8
3 ;
8
3 ]; f=24; e=48; v=6+ 8=

14; d= 5; g= 6. The edges of the rectangles are in ratio
√
8=
√
3.

This completes the proof of the Theorem.

3. Comments

(a) Three of the polyhedra listed above (P2; P5; P7) have two or three vertices repre-
sented by the same point; this may be found objectionable by some people. In
defense of nondiscrimination against such polyhedra one may note that polyhedra
with coplanar faces have been accepted for a long time; see for example, Hess [12,
p. 34], Br�uckner [1, p. 215; 2, pp. 154, 310], Coxeter et al. [5, Figs. 41; 80; 91; 92],
or the corresponding Figs. 110; 115; 118; 119 in Wenninger [14]. Since the polar
(reciprocal) polyhedra have coinciding vertices, it would be natural to expect that
they have been as frequently accepted. However, this happened only on rare occa-
sions (Hess [12] and Br�uckner [1,2] actually admit two vertices of the same face
to be at the same point), and such polyhedra were never consistently investigated.
In any case, it seems to us that disallowing the possibility of distinct vertices being
represented by the same point is a needless and arbitrary restriction, without any
intrinsic justi�cation.

(b) The rectangle-faced polyhedra P4, P5 and P9 seem to have been �rst described in
Coxeter and Gr�unbaum [4]; P1 appeared earlier, see for example, Unkelbach [13].
The absence of any mention of the rhombohedron P7 in the literature is rather
strange; the only explanation that comes to mind is that the representation of
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Fig. 3. (a) The 48-faced isohedron with parallelogrammatic faces, obtained by halving two copies of each
face of the rhombic dodecahedron P3. (b), (c) The two isohedra with 48 parallelogrammatic faces, obtained
by dividing into two each face of the polyhedron P6.

distinct vertices by the same point was responsible for the omission. The fact that
P2 and P6 are apparently new is less surprising, since it seems that nobody ever
looked for polyhedra with parallelogrammatic faces that are not rhombi. However,
P6 is a polyhedron even under more restrictive de�nitions than the ones used here.

(c) There are many other parallelogram-faced isohedra besides the ones listed above.
However, their symmetry groups are not generated by the reections in their edges.
For example, in analogy to the derivation of P4 from the cube P8 by cutting in
half two copies of each face, the rhombic dodecahedron P3 yields an isohedron
with 48 parallelograms as faces, as Fig. 3(a). Analogously, P6 leads to the two
distinct parallelogram-faced isohedra with 48 faces shown in Fig. 3(b) and (c). In
all three cases, the two parallelograms that resulted from the splitting of one face
of the original polyhedron are related by halfturns, and not by mirror symmetry.
It may be conjectured that there are no additional parallelogram-faced isohedra in
which each edge is either a mirror or else its midpoint is a center of a halfturn. It
may also be noted that the faces of the polyhedron in Fig. 3(c) coincide as sets
with the faces of P2; however, their adjacencies are di�erent, hence this is a new
polyhedron.
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Fig. 4. (a) Three rhombi whose union is an equilateral triangle. (b), (c) Using the pattern from (a), rhombic
isohedra with 24 or 12 faces can be generated from the regular octahedron and tetrahedron.

(d) There exist parallelogram-faced isohedra of still other kinds. In Fig. 4(a) is shown
a set of three congruent rhombi which are related in such a way that their union
covers an equilateral triangle. If every face of the regular octahedron is replaced
by such a triplet of rhombi, the resulting nonorientable rhombic isohedron has 24
faces; see Fig. 4(b). Naturally, analogous replacements can be made starting from
the regular tetrahedron and icosahedron. The former case is particularly interesting
since it leads to a new type of isohedral rhombic dodecahedron, see Fig. 4(c). There
are various other constructions of analogous kinds that lead to parallelogram-faced
isohedra. A detailed account is in preparation.

(e) If we apply the splitting operation of (c) above to the polyhedron P4, the resulting
collection of 48 squares is another polyhedron, in which the eight vertices of the
original cube are 6-valent (with a vertex �gure of rotation number 2) while the
other 36 vertices are 4-valent. The polyhedron looks exactly like P1, but all faces
and edges are now coinciding in pairs, as are all vertices except the ones of the
original cube. We did not include this polyhedron, or other polyhedra constructed in
a similar way, in the enumeration of the theorem because the concept of symmetry
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has to be modi�ed for such polyhedra. It is not enough to note that the reection
in a plane is a symmetry; to specify its e�ect on the polyhedron it is necessary
to declare which of the coinciding faces is mapped onto which face. For example,
one may agree that one of each pair of coinciding faces is red and the other green,
and that reections in mirrors along edges of the cube reverse colors while the
other reections do not change colors. Again, there are many possible extensions
of this construction, which would lead us beyond the scope of this article.

(f) The rectangle-faced polyhedron P9 is of the isohedral type denoted (21) in the
listing described by Br�uckner [1, p. 191], and an example of an isohedron of this
type is shown in his Fig. 2 of Plate 10. In fact, although Br�uckner describes its
faces as trapezoids (noting speci�cally that it has a pair of parallel sides, of which
one connects two vertices of a cube, the other two vertices of an octahedron), and
although the faces of the model seem to be rectangles, he does not seem to have
noticed this feature and the particular character of this polyhedron.

(g) Until recently, the only parallelogram-faced isohedra with icosahedral symmetry de-
scribed in the literature were the three rhombic triacontahedra (see [3, p. 25, 103];
Cundy and Rollett [6, p. 121, 125, 126]), and a rhombic hexecontahedron described
by Unkelbach [13]. Recently, three additional rhombic hexecontahedra have been
described [8–10]. The method of the present paper allows the complete determina-
tion of all the parallelogram-faced isohedra with edges contained in mirrors; this
will be described in detail elsewhere. Among these are three rectangle-faced iso-
hedra. However, there is large number of other rhombic isohedra with icosahedral
symmetry; these have not been completely determined so far.

References

[1] M. Br�uckner, Vielecke und Vielache, Teubner, Leipzig, 1900.
[2] M. Br�uckner, �Uber die gleicheckig-gleich�achigen, diskontinuierlichen und nichtkonvexen polyeder,

Nova Acta. Leopold. (Halle) 86 (1) (1906) 345 pages +30 plates.
[3] H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover, New York, 1973.
[4] H.S.M. Coxeter, B. Gr�unbaum, Face-transitive polyhedra with rectangular faces, Math. Rep. Acad. Sci.

Canada 20 (1998) 16–21.
[5] H.S.M. Coxeter, M.S. Longuet-Higgins, J.C.P. Miller, Uniform polyhedra, Philos. Trans. Roy. Soc.

London (A) 246 (1953=54) 401–450+6 plates.
[6] H.M. Cundy, A.P. Rollett, Mathematical Models, 2nd Edition. Clarendon Press, Oxford, 1961.
[7] B. Gr�unbaum, Polyhedra with hollow faces, in: T. Bisztriczky, P. McMullen, R. Schneider, A. Ivic’

Weiss (Eds.), ‘POLYTOPES: Abstract, Convex and Computational’, Proceedings of the NATO — ASI
Conference, Toronto 1993, Kluwer Acad. Publ., Dordrecht, 1994, pp. 43–70.

[8] B. Gr�unbaum, A new rhombic hexecontahedron, Geombinatorics 6 (1996) 15–18.
[9] B. Gr�unbaum, A new rhombic hexecontahedron — once more, Geombinatorics 6 (1996) 55–59.
[10] B. Gr�unbaum, Still more rhombic hexecontahedra, Geombinatorics 6 (1997) 140–142.
[11] B. Gr�unbaum, Isogonal prismatoids, Discrete Comput. Geom. 18 (1997) 13–52.
[12] E. Hess, Ueber die zugleich gleicheckigen und gleich�achigen Polyeder, Schriften der Gesellschaft zur

Bef�orderung der gesammten Naturwissenschaften zu Marburg 11 (1876) 97 pages+plates.
[13] H. Unkelbach, Die kantensymmetrischen, gleichkantigen Polyeder, Deutsche Math. 5 (1940) 306–316.

Reviewed by H.S.M. Coxeter in Math. Rev. 7 (1946) 164.
[14] M.J. Wenninger, Polyhedron Models, Cambridge Univeristy Press, Cambridge, 1971.


