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One of the well known questions in elementary combinatorial
geometry requires the proof of the assertion that for every finite set  P
of points in the Euclidean plane, not all on one line, there exists a line
passing through precisely two points of  P.  Such a line if often called
an ordinary line of  P.  First posed by J. J. Sylvester more than a
century ago, the question was forgotten and revived only in the 1930's
by Paul Erdös; the first proofs were found soon thereafter (Erdös 1943;
for detailed accounts of Sylvester's problem, its history, and its many
ramifications see Grünbaum 1972, Borwein & Moser 1990, Erdös &
Purdy 1995).  One of the many unsolved problems in this direction is
finding the minimal number  ω(n)  of ordinary lines in sets  P  of  n
points.  It is known that  ω(n) ≤ n/2  for infinitely many values of  n,
but on the other hand, the best estimate from below is  ω(n) ≥ 6n/13
(Csima & Sawyer 1993) for  n > 7.

A different aspect of the same type of questions is the
following.  Since every finite set  P  of noncollinear points determines
some ordinary lines, it follows that every such  P  contains points with
the property that the omission of such a point would reduce the
number of lines determined by the remaining points.  We call such
points non-omittable.  We say that a point  X  of  P  is omittable if the
set obtained from  P  by deleting  X  determines the same lines as the
set  P.  For example the center of a square is an omittable point of the
set  P  which consists of the vertices of the square and its center.  A
more elaborate example is shown in Figure 1; each of the four points



marked by hollow circles is an omittable point of the set of seven point
indicated by hollow and full circles.

Naturally, many sets  P  have no omittable points; in contrast, it
is not easy to find large sets  P  with relatively many omittable points.
The only published results seem to be in the old and little known (and
not easily accessible) paper by Koutsky & Polak 1960.  Theorems 1
and 2 below are slight extensions and strengthenings of their results
with simplifications of their proofs.  Before formulating these results
and their proofs we note that instead of the Euclidean plane we may
substitute the projective plane, and in particular, the extended
Euclidean plane model of the projective plane.  This is possible
because all the concepts and properties considered here are invariant
under projective transformations.  The use of the extended Euclidean
plane (that is, the Euclidean plane augmented by the "points at
infinity", each of which is the common point of all straight lines
parallel to a given direction, and the "line at infinity" which consists of

Figure 1.  A set of seven points, four of which (shown by hollow
circles) are omittable.



all points at infinity), enables one to consider such concepts as
"convex hull" and "regular polygons".

Theorem 1.   If a set  P  of  n  points, not all collinear, contains
k ≥ 3  omittable points then  n ≥ 3k.  Moreover, for every  k ≥ 3  there
exists a set of  3k  points with  k  collinear omittable points.

Proof.  Let the line containing the  k  omittable points  X1, ... ,
Xk  be the line at infinity, and let  C  be the convex hull of the
remaining points;  clearly,  C is a convex polygon.  For each of the
omittable points  Xi  consider the two supporting lines of  C  in
direction of  Xi.  Because  Xi  is omittable, each of these lines contains
at least two distinct points of  P,  and therefore an edge of  C.  Thus, P
has at least  2k  edges, hence at least  2k  vertices, and so  n ≥ k + 2k,
as claimed.  To establish the second part of the theorem it is enough to
consider as  P  the set consisting of the vertices a regular polygon with
2k  edges, together with the  k  points at infinity in the directions of the
edges of the polygon; these  k  points are omittable.  ◊

Theorem 2.  Given any set  Q  of  k  collinear points, there
exists a set  P  such that the points of  Q  are the only omittable points
of  P.

Proof.  Let the points  X1, X2, X3, ...  of  Q  be at infinity.  We
start with points  Y1, Y2  collinear with  X1, then construct translates
Y3, Y4  of  Y1, Y2   by a vector   V2  in the direction of  X2;  the four
points  Yj  are translated by a vector  V3  in the direction of  X3,  the
choice of  V3  being such that no three of the eight points  Yj  are
collinear.  Repeating the same procedure for the remaining  Xi's  we



arrive at a set  P  consisting of  k + 2k  points and having precisely the
set  Q  of omittable points.  ◊

Let  ψ(n)  denote the largest number of omittable points
possible in any set of  n  points.  The example given in the proof of
Theorem 1 shows that  ψ(n) ≥ [n/3], where the symbol  [t]  denotes the
largest integer not greater than  t.  This can be improved by observing
that if  k  is odd,  k = 2s + 1,  then one can add the center of the regular
polygon to the set  P, thereby obtaining a set of  n = 6s + 4  points with
2s + 2  omittable points;  hence  ψ(6s + 4) ≥  2s + 2 > [(6s + 4)/3].
The example in Figure 1 shows that  ψ(7) ≥ 4, and it may be shown
that equality holds.  Six of the 13 points in Figure 2 are omittable,
hence  ψ(13) ≥ 6;  almost certainly equality holds.

Figure 2.  A set of 13 points (four at infinity, indicated by the
directions of the arrows) which has six omittable points (shown by

hollow circles.



Besides the examples in Figures 1 and 2, only one other set  P
of  n  points is known for which the number of omittable points is
2 + [n/3].  This is the set of  n = 21  points shown in Figure 3,  which
has nine omittable points.

There are many open problems related to omittable points.
Here are just a few for which I venture to guess an answer.

Conjecture 1.  lim n → ∞ ψ(n)/n = 1/3.

Figure 3.  A set of 21 points, nine of which are omittable.  These
points are indicated by hollow circles, four of which are at infinity.



Conjecture 2.  There exists an integer  N  such that for every
set  P  of  n ≥ N  points , either all or all but one omittable points of  P
are collinear.

Conjecture 3.  The construction in Theorem 2 is "essentially"
best possible in the sense that there exists a constant  c > 0  such that
for each  k  there exist  k  collinear points such that any set for which
the given points are omittable has at least  c 2k  points.

Other questions worth investigating are: How many points can
be omitted simultaneously ?  What happens if pseudolines are admitted
instead of lines ?  What is the situation if the points generate planes in
space instead of lines in the plane ?
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