Geombinatorics 9(1999), 3 - 9.

Monochromatic intersection points
in families of colored lines

by Branko Griinbaum
University of Washington, Box 354350, Seattle, WA 98195-4350
e-mail: grunbaum@math.washington.edu

Many questions about families of straight lines in the plane and
their intersection points seem easy but the answers are hard to find. In
this note we shall discuss one such question, the history of which goes
back more than thirty years.

Let L be a family of straight lines, and let each line be colored
either green or red; throughout, we shall assume that each of the colors
actually appears on at least one line. The first question, which by all
accounts seems to have been raised by Ron Graham around 1965 is
whether each family £ must have at least one "monochromatic point"
— that is, whether some intersection point is contained only in lines of
one of the colors. The question seems to have been widely
disseminated by word of mouth, and D. Newman popularized it in
various venues. Strangely, it remained out of the published literature
until the appearance of an abstract (Motzkin [1967]) which contained
both a formulation of Graham's question and a statement that the
answer is affirmative. Michael Rabin arrived at the affirmative answer
independently, and a joint paper of Motzkin and Rabin was supposed
to appear; this was mentioned in the first proof that was published
(Chakerian [1970]), and was confirmed to the present author by Prof.
Rabin in a letter in 1975. However, this paper has not appeared so far,
and it seems not likely that it will ever be published. A proof
attributed to Motzkin (via private communications through a number
of people) and presented by me in unpublished lecture notes 25 years
ago appeared in Erdos & Purdy [1995], with mistaken attribution to S.
K. Stein (who was a link in the transmission of Motzkin's proof).

Since there are now two published, easily accessible proofs of
Motzkin's theorem, we shall not give a proof here; instead, we shall



concentrate on investigating the situation in which it is given that there
are no red monochromatic vertices; such families of lines are said to be
biased. This topic has also been considered by Motzkin [1967], as
well as in the abstract Grunbaum [1975]. The motivation for looking
at biased families of lines is the common-sense feeling that if all
monochromatic vertices are green, there cannot be too many red lines.
However, this feeling is only partly justified — in fact, there is one
class of families which behave in the opposite way. This is illustrated
in Figure 1, which is typical of the situation in which there are two or
more green lines and arbitrarily many red ones, but all red lines and at

least one green line pass through one point, while at least one green
lines does not contain that point.

From now on, the term "biased
family" will be used only for families in which the red lines have no
common point.

To make the description of the available results simpler, let the
surplus s = s(L) of a biased family L be the difference between the
numbers of red and green lines in L. Motzkin [1967] stated that the
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Figure 1. A typical example of a biased fa

mily. In this and all
following illustrations, the solid lines are "red", and the dashed lines
are "green".



largest known s is s =4, which "occurs for the regular star-5-gon".
He probably meant the family shown in Figure 2. Motzkin also stated
that the only known biased families with arbitrarily large number of
red lines are of 10 types, and that for them s =1.

In Grunbaum [1975] I stated that there are (at least) two types
of biased families (with arbitrarily large numbers of red lines) and s =
4; there exist many types of families with smaller s. The smallest
members of the two families with s = 4 are shown Figure 3 and 4,
from which the general construction can be immediately deduced. I
also conjectured that s < 4 for all biased families. However, this
conjecture is not true, as is shown by the example, discovered very
recently and shown in Figure 5. In this example s =6.

We are left with many open questions, for which I dare not
conjecture answers. Here are a few of the most immediate ones:

Figure 2. A biased family with s =4; it consists of ten red lines and
six green ones. In this and the following illustrations, the lines are in
the extended Euclidean plane, see Remark 2. The presence of a
dashed or solid horizontal line at the top of a diagram indicated that
the "line at infinity" is included in the family.
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Figure 3. The first three members

families of lines with s =4.



Figure 4. Two members of another infinite sequence of biased
families of lines with s =4.



(1) Is the biased family in Figure 5 unique — or do there exist
other families with s = 6 ? If other families exist, is their number
finite, or infinite ?

2) Do there exist biased families with s > 6 ? If such families
exist, is there a finite bound on s, or can one find biased families with
arbitrarily large s ?

3) Can one characterize biased families with a single mono-
chromatic vertex ? The example in Figure 2 disproves the conjecture
made in Grunbaum [1975] that for such families s < 1.

Figure 5. A biased family of lines with s =6.



Remarks.

1. The presentation in Motzkin [1967] deals with the dual of the
situation described here: given finite families of points, each point of
one of two colors, are there monochromatic lines. While this
formulation and the one used here are clearly equivalent, the examples
in the illustrations seem to be more readily understandable in our
version.

2. Our diagrams are understood to be situated in the projective
plane, represented as the Euclidean plane extended by the "points at
infinity" that correspond to pencils of parallel lines, and the "line at
infinity" that consists of all the points at infinity. By taking a suitable
projective image of these diagrams, equivalent examples could have
been presented in the Euclidean plane; however, in doing so we would
have lost the symmetry and simplicity visible in our illustrations.
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