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Branko Grünbaum:

ACOPTIC  POLYHEDRA1

Abstract.  Acoptic polyhedra are polyhedra in 3-space, with simple
polygons as faces and with no selfintersections.  These polyhedra are
generalizations of convex polyhedra, and present a variety of interesting
properties and open problems.  Among the most challenging is the
"general realizability conjecture," according to which every cell-complex
decomposition of an orientable 2-manifold (satisfying some natural
conditions) is isomorphic to an acoptic polyhedron.  The known partitial
results on this conjecture are given. Definitions and concepts that may be
useful in future studies are presented, together with a variety of illustrative
examples and additional open questions.

1. General introduction.

The theory of convex polytopes has had a phenomenal flowering during the last
fifty or so years, and is at present a mature field2.  Hence it seems to be the appropriate
time to start the systematic study of more general, not necessarily convex, polyhedra and
polytopes.

There are many reasons for such activity:

(i) The collection of objects to be studied is vastly greater and more
interesting if not restricted by requiring convexity.  In particular, such polyhedra can be
used to model a variety of orientable and non-orientable maps in a visually accessible
manner.

(ii) Convexity is not essential for many results in the formulation of
which it is assumed.  But regardless of whether a certain property characterizes convex
polyhedra or not, the investigation of its range of applicability is bound to produce new
insights.  Is convexity just a convenient assumption, which makes it possible to carry out

                                    
1 Research supported in part by NSF grant DMS-9300657.  Many of the new results
and insights presented were obtained in long-term collaboration with G. C. Shephard, but
the author alone is responsible for the views and statements formulated in the paper.
2 An attractive and up-to-date introduction to this topic is Ziegler's book [Z1].
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a certain proof, or do there exist some limitations on the validity of the theorem in the
nonconvex case; if so –– what are the limitations, and what happens if they are exceeded?

A good example of such developments is Cauchy's uniqueness theorem for
convex polyhedra, which implies the rigidity of cardboard models3

.  It has been known for more than two centuries that the uniqueness theorem does not
hold if nonconvex polyhedra are admitted.  However, in the class of polyhedra without
selfintersections, Cauchy's theorem is valid not only for convex polyhedra, but for some
nonconvex ones as well; how can these polyhedra be characterized?  How can polyhedra
with only a finite number of realizations be characterized?  What is the relation between
the maximal number of distinct realizations and the number of faces or vertices?
Continuously movable polyhedra without selfintersections are known4, but there is no
characterization or even a general way of generating such polyhedra.  The exciting
"bellows conjecture" that the volume enclosed by a movable polyhedron is constant has
just been decided5.  Still unsolved is the question whether the space of realizations of a
movable polyhedron is always simply connected6.

(iii) Many interesting families of polyhedra form continua which are
not inherently limited to convex polyhedra.  A simple example of this possibility is
shown in Figure 1; additional illustrations are furnished by the isogonal polyhedra
discussed in Section 7.

(iv) If duality or polarity of polyhedra are to be concepts applicable to
even mildly nonconvex polyhedra (such as those with convex faces and no
selfintersections), one has to admit polyhedra with selfintersections, and even polyhedra

                                    
3 Cauchy's proof appeared in [C1]; it was reproduced in some editions of
Hadamard's well-known geometry text [H2], but excluded from other editions because of
flaws in the proof as noted by Hadamard [H1] and Steinitz [S11].  Partial correction of a
minor flaw in the proof of the combinatorial lemma can be found in Lebesgue [L2].  A
complete proof appears in Steinitz-Rademacher [S12], as well as in the books of
Aleksandrov [A2] and Lyusternik [L5].  For other proofs see [H6], [S14].
Simplifications of Steinitz's proof of the geometric lemma are given in [E2]  and  [S4].
4 See the descriptions of such polyhedra in Connelly [C2], [C3], Kuiper [K1],
Aleksandrov [A3]; selfintersecting movable polyhedra have been known for more than a
century, see Bricard [B18], Lebesgue [L3].  Various aspects of rigidity and uniqueness
are discussed in Crapo-Whiteley [C9], Connelly [C5], Sabitov [S1], Maksimov [M1].
5 See the discussions of the conjecture in Connelly [C4], Sabitov [S2], Aleksandrov
[A3]; the solution appears in Connelly et al. [C6].
6 It is known that in the case of the selfintersecting movable octahedra of Bricard
the realizations space is not simply connected, see [B22].
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with selfintersecting faces7.  In fact, one is forced to go to the very general definitions in
order to have consistent and usable concepts.  This is the topic of a paper in preparation.

In each of this directions, any results that are obtained yield also additional
understanding of convex polytopes or polyhedra.

In recent years papers discussing various aspects of polyhedra more general than
the convex ones have started appearing in increasing numbers.  However, no general
framework is available, and the last attempt to give a comprehensive survey of such more
general polyhedra was in Brückner's well known book [B20], almost a whole century
ago!  As any critical reading shows, Brückner failed to make the basic definitions
consistent8, is woefully incomplete concerning the topics he discusses, and has probably
greatly contributed to the long-lasting neglect of the whole field by the mathematical
community.  The present paper overlaps several recent surveys9, which the reader may
wish to consult for additional references and for different views on various questions.

When attempting to give an overview of the available information on these
polyhedra, two basic facts need to be taken into account at the outset:

(1) At this time there is no experience, and no experimental material, to guide
the formulation of a reasonable program of investigation in dimensions higher than 3.10

Hence the thrust of the present exposition is confined to polyhedra in Euclidean
3-space  ƒ3.

(2) There are many different classes of polyhedra that make reasonable topics
of investigation.11  They differ not only by the hierarchical level of generality
considered, but also by the point of view regarding what is a polyhedron.  In some
contexts polyhedra are best interpreted as "solids"; this is also the traditional approach,

                                    
7 For a discussion of problems in this context, and the inadequacy of the "folk
wisdom" regarding duality, see [G16].
8 Details concerning the inconsistencies and other shortcomings of Brückner's book
[B20] are given in [G10], [G11].
9 Particularly near to the topics discussed here is the work of Brehm and Wills
[B17].  Their polyhedral manifolds are essentially the same as our  AC-polyhedra.  See
also Martini [M2], Brehm and Schulte [BrS].
10 Nearly the only exception are investigations concerning regular polytopes of
various degrees of generality and abstraction; for a guide to this literature see, for
example, Coxeter [C7], Johnson [J6], McMullen-Schulte [M4].
11 See, for example, Cromwell [C10] for a survey of the various kinds of polyhedra
and their history.
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going back to antiquity.  Examples of such interpretations can be found in works on the
stellation and facetting of various regular or other polyhedra12, in the studies of
polyhedral scenes13, and in investigations of the "convex ring"14.  In other situations, it
is most appropriate to consider polyhedra as surfaces built up from simple planar
polygons, or else, to consider them as built up from planar polygons but interpreting these
not as patches of the plane but as collections of straight-line segments some of which
may intersect each other15.  For convex polyhedra these different points of view
essentially coalesce, due to the famous Steinitz Theorem16.

We are concentrating on the latter type of interpretations, and in Figure 9 we
illustrate the differences that arise from this distinction.  As we go along, we introduce
several specific classes of polyhedra, with appropriate terminology and notation.  We
hope that this will facilitate the development of the field, and that the various open
problems and conjectures will present tempting challenges.

In order to avoid excessive length, we discuss here only polyhedra we call
acoptic, that is polyhedra with no selfintersections (including no selfintersecting faces).
Precise definitions are given below.  Certain aspects of more general polyhedra, with
selfintersections allowed,  have been discussed in [G10] and [G11], but much additional
work remains to be done.

One of the obstacles encountered already in the study of acoptic polyhedra, and
with even stronger effect if the polyhedra have selfintersections, is the problems of

                                    
12 Stellations of polyhedra are discussed, among others, by Wenninger [W2], [W3],
Hudson and Kingston [H7], and Messer [M8]; the latter contains many references to
other relevant books and papers.  For facetting see, for example, Bridge [B19].
13 See, for example, Shirai [S9].
14 Introduced by Hadwiger [H3], for more recent accounts see McMullen-Schneider
[M3]; see also [G18] for related material.
15 Even more general types of polyhedra, in which the faces are polygons that need
not be planar, have been considered (and may find applications in crystallography and
other fields); we shall not deal with them here.  For some points of view and various
results about these polyhedra see, for example, Grünbaum [G8], Dress [D1], [D2], Burt
[B21], Molnár [M11], Farris [F1], [F2], McMullen and Schulte [M5].  In the terminology
of Grünbaum [G10, page 50], the present exposition is restricted to epipedal polyhedra,
that is, polyhedra in which each face is a planar polygon.
16 First announced in [S11, page 77], with several different detailed proofs in [S12].
However, these expositions are written in quite cumbersome form, and the result has
remained not widely known for a long time.  It appears in Lyusternik [L5], but the proof
there is deeply flawed, ignoring the depth of the required arguments.  One of Steinitz's
proofs appears in [G5]; additional proofs of the result are given in [B8] and [Z1].
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visualization.  A perusal of this paper shows the use of several methods of presentation,
but it must be admitted that none is quite satisfactory for any but the simplest situations.
It is to be hoped that computer-based modes of presentation will alleviate this difficulty
in the near future.

Even with the limitation to acoptic polyhedra, it has been necessary to exclude
many topics which fit the aim of the paper.  These will be discussed in other venues.  The
paper is organized as follows.  Acoptic polyhedra, and some other concepts, are defined
and illustrated in Section 2, which proposes a terminology for the subject.  Sections 3, 4
and 5 are devoted to results on the realization of various maps by polyhedra, while more
general questions of realizability are considered in Section 6.  Isogonal polyhedra and
their dynatograms and panoramas are the subject of Section 7.  In Section 8 we discuss
the known results on monohedral polyhedra, while the concluding Section 9 is concerned
with spanning trees in the graphs of polyhedra.

2. Acoptic polyhedra, and some general considerations.

To judge from all appearances and experience, there is no single class of
polyhedra that deserves to be considered as the general kind deserving investigation.
Different levels of generality are appropriate in different situations.  This is no problem in
itself, but in order to avoid difficulties and misunderstandings, precise definitions and
terminology are required.  Without pretending that the following are more than possibly
suitable categories of polyhedra, here are several definitions.

To begin with, we consider polyhedra as certain collections of planar, compact,
simply-connected polygonal regions; the boundary of such a region is called a simple
polygon and the region itself is referred to as a face of the polyhedron.  A simple polygon
consists of a finite number of line segments of positive length (the edges of the polygon);
the endpoints of the edges are the vertices of the polygon.  Each vertex of a polygon
belongs to precisely two edges (said to be mutually adjacent), and the edges form a
simple circuit (Jordan polygon).  It should be noted that we made no assumption of
convexity, and that edges (adjacent or nonadjacent) may be collinear; examples may be
seen below, in Figure 2.  For brevity, we call faces, edges and vertices of a polyhedron its
elements.

In general, the conditions under which a finite collection of polygons (as
described above, or of some other type) is called a polyhedron are:

(P1) each edge is shared by precisely two faces;
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(P2) all faces containing a given vertex form a single circuit of at least three
faces; and

(P3) no proper subfamily has both these properties.
In most cases, we find it convenient to restrict the polyhedra considered by imposing
additional conditions.  The following are examples of such restrictions.  They determine
the acoptic polyhedra (from Greek acoptos, uncut) which are the main topic of this
report, and several of their subclasses.

A polyhedron is acoptic17 if
(P4) the faces are simple polygonal regions; and
(P5) the relative interiors of its elements are disjoint.

This definition does not preclude the possibility that distinct faces (contiguous or not) are
coplanar, and that two faces have several common edges and/or vertices.  It implies that
the polyhedron has a well-defined bounded interior, and an unbounded exterior.  It also
implies that the polyhedron is homeomorphic to a cell-decomposition18 (or map)  C(P)
of a compact, orientable 2-manifold  M(P); the vertices, edges and faces (countries) of the
map  C(P)  are in bijective correspondence with those of  P,  hence we may say that  P
and  C(P)  are combinatorially equivalent.  (Two polyhedra or maps are called
combinatorially equivalent, or of the same combinatorial type, provided there exists an
incidence-preserving bijection between their sets of vertices, edges, and faces.)  We also
say that  P  is a realization of  C(P);  in fact, it is an imbedding of  C(P)  in the Euclidean
3-space  ƒ3.

                                    
17 The meaning of the word "acoptic" as used here differs from the usage in [G10],
[G11].  The earlier concept corresponds to "weakly acoptic", as defined below.
18 A cell-complex decomposition of a 2-manifold  M  is a finite collection of closed
topological disks ("faces") whose union is  M,  with each two faces meeting in at most a
finite number of arcs ("edges") and singleton points, each disk meeting at least three other
disks along edges, and no two edges having coinciding endpoints ("vertices").  This
definition is more general than the one in [G5], where the disks were assumed to be
convex; this latter has been used by many other authors.  However, the present definition
is more restrictive than the usual topological concept.  The prohibition of multiple edges
between the same pair of vertices excludes some maps which are acceptable in the
topological literature.  This condition also shows that (with this interpretation) there is no
duality possible among the cell-decompositions of a 2-manifold, since there is no
prohibition of two faces having more than one edge in common.  Duality can be restored
only by allowing much more general cell complexes.  In this context, the examples and
discussion in [G16] are instructive.  It should be noted that some authors use "polyhedral
map"  for the different concept of a cell-decomposition of a 2-manifold in which there is
no assumption that the faces are polygons, but only that any two meet in either a common
arc, or a common point or not at all.  See, for example, Pulapaka and Vince [P1].
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We come now to several other conditions imposed frequently on polyhedra.  For
obvious reasons, a polyhedron is said to be convex-faced if

(P6) each face is a convex polygon.
A polyhedron is called conservative if

(P7) distinct elements have distinct affine hulls.
An acoptic polyhedron is strictly acoptic if

(P8) there are no overarching elements19.

The class of convex-faced conservative acoptic polyhedra is the most-studied type
of polyhedra more general than the convex ones.20  Obviously, convex polyhedra are
acoptic polyhedra which are convex-faced, conservative, and for which the associated
2-manifold is a sphere.  Conversely, by Steinitz's Theorem, acoptic polyhedra with these
properties are combinatorially equivalent to convex polyhedra.  While the combinatorial
types of "small" convex polyhedra have been enumerated to the limits of feasibility (see,
for example, Federico [F3]), essentially nothing is known regarding the number  t(f)  of
combinatorial types of acoptic polyhedra with  f  faces that are not realizable by convex
polyhedra.  It is easy to see21 that  t(f) = 0  for  f ≤ 5,  and  t(6) = 3  (see Figure 3), but
already  t(7)  is not known with certainty.  The only publication I am aware of with some
information on the numbers  t(n)  is Gardner [G2, pp. 32, 77].  Gardner states22 that
t(7) = 26  and  t(8) = 277.  It is not clear what these numbers are expressing; no class I
could think of yields these values.  With the definitions adopted here, I find that
t(7) = 17;  the 17 types are shown in Figure 4.  On the other hand, for other classes of
polyhedra, or under some other classification principles, the number of types changes, see
Figures 5 to 9.  A decision concerning what constitutes convenient distinctions between
polyhedra seems to depend in an essential way on the context.  However, it is appropriate
to formulate here as a major open question the following:

                                    
19 A cell complex or polyhedron has overarching elements  if it contains two vertices
and two faces that are mutually incident but are not all incident with one edge.  The three
polyhedra in Figure 3 have overarching elements; the Kepler-Poinsot regular polyhedra
{5,5/2}  and  {5/2,5}  have overarching elements as well.  Convex-faced acoptic
polyhedra are automatically free of overarching elements.  Other formulations of this
condition can be found in [B4].
20 Hajós and Heppes [H4] describe the construction of conservative polyhedra  P
with the following startling property: every vertex of  P  is exposed (that is, there is a
supporting plane of  P  which intersects  P  at this vertex only) and every supporting plane
of  P  meets  P  at vertices only.
21 See Norgate [N2], where nonacoptic pentahedra are investigated as well.
22 Gardner [G2] gives no reference for these results, nor a definition of the
polyhedra whose types he counts.
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Enumeration problem.  Determine –– at least for small  n –– the possible
combinatorial types of acoptic polyhedra with  n  faces (or with  n  vertices).  More
specialized enumerations, such as those of conservative, or simple, or simplicial
polyhedra, or by the genus of the associated map, would also be of interest.

A convex-faced acoptic polyhedron in which all vertices are convex is itself
convex.  It follows that every acoptic polyhedron of positive genus must have a
nonconvex vertex23.  The question how many such vertices must be present in convex-
faced polyhedra of various kinds was investigated by several authors; the most inclusive
results are those of Betke and Gritzmann [B10].  In this paper it is shown that every
convex-faced acoptic polyhedron of positive genus must have at least five nonconvex
vertices, and that for every positive genus there is such a polyhedron with precisely five
nonconvex vertices.

For classifications of polyhedra finer than by combinatorial type it is convenient
to distinguish three possible types of edges.  An edge  E  of an acoptic polyhedron  P  is
said to be convex (resp. flat, concave) if the dihedral angle of the two faces of  P  that
contain  E,  measured in the interior of  P,  is less than  π  (resp.  equals  π,  is greater than
π).  Edges  E, E'  of polyhedra  P, P'  have the same convexity character if both are
convex, or both flat, or both concave.  Polyhedra  P, P'  are isomorphic (or have the same
isomorphism type) if there is a map establishing  P  and  P'  as combinatorially
equivalent, such that corresponding edges have the same convexity character.  An
example of combinatorially equivalent but nonisomorphic polyhedra is shown in Figure
6.  Polyhedra  P, P'  are equiform if they are isomorphic and there exists a continuous
family  P(t) ,  0 ≤ t ≤ 1,  of polyhedra isomorphic to  P,  such that  P(0) = P  and  P(1)  is
congruent to  P'  or the mirror image of  P'.  An example of isomorphic but not equiform
polyhedra is shown in Figure 7.  Analogous examples can easily be constructed with
acoptic polyhedra of genus 1, but we conjecture that isomorphic acoptic polyhedra of
genus 0 are equiform.  The analogous result is known to be valid for polygons, see [G7].
These concepts can be refined further; we say that two equiform polyhedra are
symmetrically equiform if they, and all the polyhedra involved in the isotopy connecting
them, have the same symmetry group.  The polyhedra in the continuous family in Figure
1 are symmetrically equiform, but the example in Figure 8 shows that symmetric
equiformity is more restrictive than equiformity.
                                    
23 A vertex  V  of an acoptic polyhedron  P  is convex  provided there is a
neighborhood  N  of  V  such that the plane of every face incident with  V  is a supporting
plane of  N … V;  in other words, if the 2-manifold  P  is locally convex at  V.
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When attention is restricted to convex polyhedra, combinatorial equivalence is a
useful equivalence relation.  Although it is too coarse an equivalence to be very useful in
the more general context of acoptic polyhedra, it is sufficient in certain contexts which
occupy us first.  The more detailed classifications just described, various levels of which
may be appropriate in different situations, are considered in some specific cases later.

For polyhedra of any particular class, two kinds of general constructions are often
used.  In one construction, limits of sequences of polyhedra of the same combinatorial
type are taken, with convergence in the Hausdorff metric.  This can be interpreted in two
ways.  If –– as is often customary –– the polyhedra are considered just as polyhedral sets
of points, ignoring the combinatorial structure they possess, then the class of convex
polyhedra is closed under such limits (if subdimensional limit sets are included)24.
However, a much more interesting concept arises if the convergence is understood as
requiring that the mutually corresponding elements form convergent sequences, and the
limit is considered as having the same combinatorial type as the terms of the sequence.
In case the class under consideration is that of convex polyhedra, the resulting limits form
the weakly convex polyhedra.  An example of such a polyhedron is shown in Figure 10;
other examples appear in Figure 15 and in Figure 18 (for  a = 0,  or  b = 0,  or  a = b).  In
case the point-sets of two polyhedra coincide, we shall say that they are isomegethic25.

If the class of polyhedra whose limits are taken is that of acoptic polyhedra, the
resulting limit polyhedra are weakly acoptic.  Examples of weakly acoptic but not
acoptic polyhedra are shown in Figure 5.  Weakly acoptic polyhedra can be interpreted as
images of cell decompositions in which distinct vertices may be represented by the same
point, edges may have zero length, relative interiors of elements may have nonempty
intersection, and various other coincidences are possible.  However, if the relative
interiors of two faces (or a face and an edge, or two edges) of a weakly acoptic
polyhedron intersect, the two elements must be coplanar.  A different, direct definition of
weakly acoptic polyhedra (called there "acoptic") was given in [G10] and [G11].

The second general question of interest in connection with any given class of
polyhedra is whether the class admits duality26.  It is well known that the class of
                                    
24 The numbers of elements of the limit polyhedron may be smaller than for the
terms of the sequence; see [E3] for a discussion of the lower semicontinuity of the
numbers of elements.
25 From Greek µεγεθοσ –– extent, bulk.
26 Two polyhedra are duals of each other if there exists an incidence-reversing
bijection between their sets of elements.
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convex polyhedra is, in fact, closed under duality.  For a satisfactory duality among more
general acoptic polyhedra one would wish to have corresponding edges (or all
corresponding elements) exhibit the same convexity character.  For example, isogonal
icosahedra (such as the one shown in Figure 11(a), which has been considered by Jessen
[J5]) are dual in this sense to the isohedral dodecahedra (such as the one in Figure 11(b),
described in [O1] and [S13], and more generally in [G17]).  Many pairs of dual acoptic
polyhedra can be found such that a dual correspondence between their elements is more
or less satisfactory from the point of view of their convexity character.  However, no
general framework for examples of this kind has been proposed, and it is doubtful that it
exists.  The only consistent approach to duality of (acoptic, or more general) polyhedra is
via polarity.  However, as shown in Grünbaum-Shephard [G16], with this construction
the duals of acoptic polyhedra are often nonacoptic.  This fact is one of the reasons for
the desirability of considering more general concepts of polyhedra.  We shall expand on
this topic in a separate note.

One other problem that arises in connection with the concepts introduced above is
finding characterizations of each class of polyhedra through orientable maps  C
homeomorphic to  C(P)  for some polyhedron  P  in the class considered.  For example,
the famous theorem of Steinitz characterizes convex polyhedra as combinatorially
equivalent to spherical maps with 3-connected graphs.  Many of the results discussed
below can be considered as giving support to the following conjecture27, which seems
rather preposterous, but nevertheless is still undefeated.

General Realizability Conjecture.  Every cell-complex decomposition, without
overarching elements, of any compact orientable 2-manifold is realizable by a strictly
acoptic polyhedron.

While a proof of the General Realizability Conjecture would characterize strictly
acoptic polyhedra, at present time there is no analogous conjecture attempting to
characterize the class of all acoptic polyhedra, or the subclasses consisting of those that
are convex-faced, or convex-faced and conservative.  Also, there is no proposed
characterization of weakly acoptic polyhedra, or of weakly convex ones.

                                    
27 Variants of this conjecture were first proposed in several talks I gave in the mid-
1980's.  A formulation was also included in a manuscript [G15], several copies of which
were privately circulated; however, this paper was never submitted for publication since
major parts of it were rendered obsolete by other developments.  The conjecture was also
mentioned by Barnette et al. [B7], and Ljubic' [L4].
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3. Realizations of triangulations by acoptic polyhedra.    Restricted to
triangulations of 2-manifolds, the General Realizability Conjecture appears to have been
first formulated in [G5, p. 253]28.  Clearly, in this case any acoptic polyhedron realizing
the triangulation is automatically convex-faced and, using admissible perturbations, may
be assumed conservative as well.  It should be stressed that despite several attempts to
establish the conjecture at least for triangulations of the torus, even this special case is
still undecided.  The first examples of triangulations of the torus seem to go back to
Möbius [M10] and  Reinhardt [R2], but it is not clear exactly what kinds of polyhedra
they had in mind -- whether combinatorial, topological or geometric.  Császár [C11]
described a realization by an acoptic polyhedron of the 7-vertex triangulation of the torus
(which is a neighborly polyhedron).  Other triangulated tori realized by acoptic polyhedra
were described by Altshuler [A4], [A5].  Various toroidal acoptic polyhedra were
described by Alaoglu and Giese [A1]; their results and other works concerning polyhedra
of positive genus that have certain regularity properties are discussed in more detail in
Section 8.

One approach to the proof of the realizability conjecture for triangulations29 of
the torus is by first showing that there is a finite number of "irreducible" triangulations,
then finding acoptic realizations of these maps, and finally showing that if one can realize
by an acoptic polyhedron a triangulation resulting by a "reduction" of a given
triangulation, then the given triangulation can be realized by an acoptic polyhedron as
well.  The first step, in which a triangulation is called irreducible if the contraction of
any edge results in a complex which is not a map in the sense used here, has been carried
out repeatedly.  Independently of each other, this enumeration was carried out in the early
1970's by R. A. Duke and the present author, by D. W. Barnette, and at a later time by S.
A. Lavrenchenko; only Lavrenchenko published the list of the 21 irreducible
triangulations, see [L1].  These irreducible triangulations are shown in Figure 1230.  The

                                    
28 Various aspects of the triangulations case of the General Realizability Conjecture
have been discussed, among others, by Altshuler [A4], [A5], Barnette [B4], Duke [D3],
and Reay [R1]; many additional references can be found in these papers.  Certain cases in
which triangulations of the torus can be realized by an acoptic polyhedron are presented
in [A4], [A5].
29 Another approach, mentioned in [G5, p.253] in connection with the triangulation
of the torus with 7 vertices, finds the given map as a subcomplex of the 2-skeleton of a
convex 4-polytope, and obtains an imbedding in 3-space by considering the Schlegel
diagram of the polytope.  For elaboration of this approach see [D3], [A6] and the
references given there.
30 The statements in Barnette [B4] and Schipper [S3] that there are 24 resp. 22 such
triangulations are erroneous.
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feasibility of the second step is also known.  However, the last step has so far resisted all
attempts at proof.

In analogy to the first step above, Barnette and Edelson [B5], [B6] showed that
every 2-manifold has only finitely many irreducible triangulations;  Nakamoto and Ota
[N1] showed that the number of vertices in any irreducible triangulation of a 2-manifold
M  is bounded from above by a linear function of the Euler characteristic  of  M.
Algorithmic aspects of this result have been considered by Schipper [S3].

For triangulations of 2-manifolds of genus greater than 1 only a few specific
instances have been decided, by the construction of appropriate polyhedra.  In particular,
acoptic polyhedra that realize triangulations of orientable 2-manifolds of genus 2, 3, and
4 having the minimal possible number of vertices31  (10, 10, and 11, respectively) have
been obtained by Brehm [B14], [B15] and by Bokowski and Brehm [B11]32.  The
minimal triangulations of the 2-manifolds of genus 5 and 6 have 12 vertices (in
particular, for genus 6 the graph is the complete 12-vertex graph), but so far no
realizations by acoptic polyhedra have been reported.  Since the number of vertices of
minimal triangulations of 2-manifolds of genus  g  grows only as  √g,  for sufficiently
high genus if a realizations by an acoptic polyhedron exists it will have more "holes" than
vertices33.  This was often deemed as an unlikely situation, leading to expressions of
disbelief in the existence of such realizations34.  However, this argument is invalid; in
fact, McMullen, Schulz and Wills [M6] constructed acoptic polyhedra of genus  g  with
O(g/log g)  vertices.  Their smallest example showing the possibility of genus exceeding
the number of vertices occurs for  g = 577, with  576  vertices.

4. Realizations of toroidal quadrangulations and other maps by acoptic
polyhedra.    Realizations by acoptic polyhedra of certain cell-complex decompositions
of the torus into quadrangles, or into hexagons, have been described already by Becker
[B9] (see also Brückner [B20, p 221]).  Realizations of toroidal maps without
overarching elements by convex-faced conservative acoptic polyhedra were considered
by Simutis [S7]; see also [B4].  Among other results she showed that various classes of
                                    
31 According to Ringel and Youngs [R3], the minimal number of vertices in a
triangulation of an orientable 2-manifold of genus  g  equals the least integer ≥ (7 +

48g +1 )/2  if  g ≠ 2, and  10  if  g = 2.
32 For information about maps having complete graphs as their 1-skeleton see [A7].
33 The first case in which this happens is  g = 20 > 19 = number of vertices in a
minimal triangulation of the manifold of genus  20.
34 For example, in Schulz [S6].
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toroidal maps can be realized by such polyhedra, while other maps cannot be realized
under these restrictions.  However, many of Simutis' unrealizable examples are obtained
by face-splitting from realizable maps, and hence can be realized if the polyhedra are not
required to be conservative35.  In other cases in which Simutis shows that the map is not
realizable, no convex-faced acoptic polyhedron –– conservative or not –– can realize the
map.  This includes, in particular, the well-known  3-valent toroidal map of  7
hexagons36, and the  9-quadrangles map shown in Figure 13 (the "twisted triangular
picture frame"); however, both maps are realizable by acoptic polyhedra which have
some nonconvex faces.  For realizations of the former map, found by Szilassi, there are
illustrations in several publications37.  In contrast, it seems that no illustration is
available in the literature of the Ljubic' torus [L4], which is a realization of the latter map
and was described by Ljubic' at a regional meeting of the AMS in 1987; one version of
the Ljubic' torus is shown in Figure 13.

There are many quadrangulations and other cell-decompositions of the torus for
which the existence of a realization by an acoptic polyhedron is undecided.  Three small
maps of this kind, which are prime candidates for counterexamples for the General
Realization Conjecture, are shown in Figure 14.

5. Realizations of regular maps by acoptic polyhedra.    For regular
maps38 on the torus it was shown by Schwörbel [S7] that every such map is realizable
by an acoptic polyhedron; this is especially remarkable for the maps consisting of
quadrangles, and of hexagons.  Two special cases are presented in [S8].

It is known that for every  p ≥ 3  and  q ≥ 3  there exist regular maps with  p-gonal
faces  and  q-valent vertices39.  According to a private communication from Prof. S. E.
Wilson, such regular maps exist even if one requires them to be without overarching
elements.  The General Realizability Conjecture implies that all such maps can be

                                    
35 This applies, in particular, to the examples in Figures 16 and 18 of [S10].
36 3-valent maps can be realized by convex-faced acoptic polyhedra only if they are
of genus  0,  see [G5, p. 206], [B4].  For far-reaching generalizations of this observation
see [B7] and the references given there.
37 See, for example, Gardner [G1], Stewart [S13], Szilassi [S15].
38 A map (cell decomposition) or polyhedron is regular  if the group of its
combinatorial automorphisms acts transitively on its flags, where each flag is a triplet
consisting of a vertex, an edge, and a face, all mutually incident.
39 This conjecture from [G9] has been proved by Vince [V1] and Wilson [G3].
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realized by acoptic polyhedra.  Unfortunately, a proof of such a far-reaching
generalization of Schwörbel's results appears unlikely in the near future.

For an account of the known other cases in which a regular map is realized by a
convex-faced acoptic polyhedron, or by an acoptic polyhedron, and for references to the
original papers, see Bokowski and Wills [B12], Brehm and Wills [B17], Schulte and
Wills [S5], and their references.  The list of such maps is quite short.  Specifically,
convex-faced acoptic realizations are known for:

(i) The triangulations of genus 3 usually denoted  {3,7}8  and  {3,8}6  and
named after Klein and Dyck, respectively.

(ii) Quadrangulations (of valences 6 and 8) usually denoted  {4,6 | 3}  and
{4,8 | 3},  which are most easily visualized as "thickened" versions of the 1-skeleton of
the Schlegel diagram in 3-space of the regular 4-simplex and the regular 24-cell; their
genera are 6 and 73.  In suitable realizations these have the full tetrahedral resp.
octahedral groups as symmetry group.40

(iii) The two maps  {6,4 | 3}  and  {8,4 | 3}  dual (as maps) to the ones in (ii).
(iv) An infinite family of maps  {4,k | 4[p/2]-1}  for  k ≥ 4,  of genus  1 + (k–4)

2p–3,  constructed in [M6] and [M7], and their dual maps.
(v) A realization of the well-known Fricke-Klein map   (3,8)12  of genus  5  by

an acoptic isogonal polyhedron is described below and shown in Figure 19.

6. Acoptic polyhedra with prescribed face-vectors or f-vectors.  The
General Realization Conjecture and related approaches to other classes of polyhedra aim
at a very detailed description of possible combinatorial types.  A coarser classification is
provided by Eberhard-type theorems, which have been investigated for convex polyhedra
for over a century41.  These results deal with realizations by polyhedra of a given class of
sequences that specify the number of  k-gonal faces (or  k-valent vertices) for various
values of  k.  The basic restrictions on the sequences involved usually stem from the

                                    
40 As pointed out by Prof. J. M. Wills, acoptic realizations with full icosahedral
symmetry group have not been found for any regular map.  Possibly, none exist.
41 The first results are those of Eberhard [E1], dealing with convex polyhedra.  For a
more accessible presentation of Eberhard's results see [G5].  The topic has had (and
continues to have) many extensions, specializations and related developments; for some
of these see [G19], [J1], [J4] and the references given there.  It is interesting to note that
the constructions used by Eberhard have recently been rediscovered by chemists
investigating the "Fullerene" forms of carbon; see, for example, Fowler and Redmond
[F4] and the references given there.
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Euler relation (and, in some cases, from more specific constraints); in many cases, the
difficult part is the construction of the polyhedra.

In more recent times the topic also attracted interesting extensions to convex-
faced acoptic polyhedra of positive genus, see [J2], [J7], [J3], [G4].  There seem to have
been no corresponding examinations of the case in which other classes of acoptic
polyhedra are admitted.  However, there has been considerable work done on the
question of realization of even coarser data sets.  In particular, investigations that dealt
with the realization by convex-faced acoptic polyhedra of the f-vectors (whose
components are the numbers of elements of different dimensions of the polyhedron in
question) or some other global characteristic (such as the valence-functional42) have led
to very interesting results.  Concerning the latter, we mention here only the following
result from [B7]:

If  P  is  a convex-faced acoptic polyhedron of genus  g ≥ 1  then   δ(P) ≥ 2 + 2g.
This is best possible for  g = 1.

Many other results and open problems on valence functionals of convex-faced
acoptic polyhedra, dealing also with polyhedra realizable in higher-dimensional spaces
and with non-orientable polyhedra, are presented in [B7] together with references to
earlier literature.

7. Isogonal acoptic polyhedra.  Another direction of investigation concerns
the acoptic polyhedra which possess a high degree of symmetry.  If the group of
(isometric) symmetries of a polyhedron acts transitively of its vertices (or edges, or faces)
then the polyhedron is said to be isogonal (or isotoxal, or isohedral, respectively).  For
convex polyhedra and for the analogously defined maps on the sphere, the possibilities
have been studied in some detail for close to two centuries43.  Results on one aspect of
this topic, dealing with maps on the sphere and convex polyhedra appear in Grünbaum
and Shephard [G13], while the existence of isogonal acoptic polyhedra of higher genus

                                    
42 Following [B7], the valence functional   δ(P)  of a polyhedron  P  is  δ(P) =
Σ (valence(V)-3), where the summation is over all the vertices  V.  It is a way of
measuring the departure of the polyhedron or map from being simple (3-valent).  It is
likely that analogous results may hold for the similarly defined functionals
Σ (valence(V)-4)  and  Σ (valence(V)-6).
43 For the early history see Brückner [B20]; a recent account is given by Martini
[M2].
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was established in [G14]44.  The construction of isogonal acoptic tori is discussed in
some detail in [G11]; there are two main kinds, with vertex symbols  (3.3.3.3.3.3)  and
(3.3.3.4.4).  For each kind there are distinct combinatorial types that depend on two
discrete parameters; each combinatorial type depends (up to similarity) on a continuous
parameter.  As shown by Schwörbel, the regular toroidal map  {3,6}2,2  (in the notation
of Coxeter and Moser [C8]) can be realized by an acoptic torus.  Slightly different
realizations of the map  {3,6}2,2  are provided by members of the continuous family of
isogonal tori shown in Figure 15.  Another type of highly symmetric polyhedra is
described by Wills [W4].

In order to present information about isogonal polyhedra of a given combinatorial
type in a convenient manner, we use dynatograms45 and panoramas.  Both
representations are possible because each such family depends on at most two
parameters.  In a dynatogram we show the regions (or arcs) that correspond to parameter
values that yield isomorphic polyhedra, while in a panorama small copies of views of
polyhedra are placed in positions that correspond (approximately) to the parameter values
that determine representative examples of the type.  As an illustration, we show in Figure
16 a parametrization of isogonal polyhedra of the combinatorial type of the snub cube
(3.3.3.3.4).  The dynatogram of this family is shown in Figure 17, while a panorama
appears in Figure 18.  These tools lead to various insights; the following are some
examples.

(i) Despite appearances, the weakly acoptic polyhedron that corresponds to
(a,b) = (1,0) is not isomegethic with the cuboctahedron; in the notation of Figure 16, pairs
of vertices such as  D  and  F  coincide, hence (proper) triangles  ADE  and  ADF  also
coincide, but extend into the interior of the cuboctahedron!

(ii) It is obvious on contemplating Figure 18 that the nonconvex acoptic
polyhedra with  a > b  are all isomorphic, and that the nonconvex ones with  a < b  are
also all isomorphic –– but the polyhedra in two families are not isomorphic to each other.

(iii) The Boolean sum46 of a polyhedron with  b < 0  with its convex hull
yields an acoptic isogonal polyhedron of genus  5,  while the same construction on a
                                    
44 According to [K2] and [B17, p. 547], the "flat tori" mentioned in Brehm and
Kühnel [B16], which were described by Brehm [B13] in 1978, are isogonal; however, the
published accounts do not mention any symmetry properties.  According to Kurth [K2],
these polyhedra have been independently discovered by H. Leitzke.
45 From the Greek δυνατοσ –– possible.
46 The Boolean sum of two acoptic polyhedra is obtained from the union of the
elements of both by deleting the faces that occur in both polyhedra.
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polyhedron with  b > 1  leads to an acoptic isogonal polyhedron of genus 7; these
polyhedra have been described in [G14].

(iv) The Boolean sum of the polyhedron that corresponds to  (a,b) = (1/3,1/6)
with the mirror image of the polyhedron with  (a,b) = (1/3,-1/6)  is the new realization of
the regular map  (3,8)12  of genus  5  mentioned earlier (see Figure 19).  For more details
concerning polyhedral realizations of this map see [G12].

As another illustration we show in Figure 21 a dynatogram of the acoptic isogonal
icosahedra (3.3.3.3.3), using the notation of Figure 20, and with explanations analogous
to those in the caption of Figure 18.  Comments similar to (i), (ii) and (iii) above apply in
this case as well.

Analogous dynatograms and panoramas can be presented for many other families
of polyhedra.  A panorama of those acoptic polyhedra of the combinatorial type of the
regular dodecahedron, which have a plane of symmetry, is shown in Figure 1.  A
systematic exposition of dynatograms and panoramas for acoptic polyhedra that are
isogonal, or isotoxal, or isohedral is being prepared.

8. Monohedral polyhedra.   Several different directions of investigation
concern polyhedra that are monohedral, that is, have all faces mutually congruent but
not necessarily equivalent under symmetries of the polyhedron.  The common shape of
faces of a monohedral polyhedron is called its protoface.  A well-known example of a
convex monohedral but not isohedral polyhedron is shown in Figure 22(a).  It is
remarkable that the following question, widespread in the folklore, is still open:

Conjecture.  If the simple polygon  F  is the protoface of a strictly convex
monohedral polyhedron then  F  is also the protoface of an isohedral polyhedron.47

The requirement of strict convexity is essential for the validity of the conjecture,
as shown be the example of the monohedral polyhedron in Figure 10; its protoface is a  3
by  1  rectangle, which is not the protoface of any isohedral polyhedron.  The conjecture
is analogous to one part of Problem 18 of Hilbert's famous collection [H5] concerning
monohedral tilings of the plane.  The tiling analog of the conjecture is known to fail, but

                                    
47 It seems that the protoface of the polyhedron in Figure 22 is the only quadrangle
which is the protoface of a strictly convex monohedral but not isohedral polyhedron.  No
pentagon with a similar property is known.
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the complete determination of strictly convex protofaces of monohedral tilings is still
open; see [G17] for details and references.48

A different type of question, first raised long ago by Tom Banchoff49 for
icosahedra, is the following:  For any given polyhedron  P,  all faces of which have the
same number of sides, determine all monohedral acoptic polyhedra  Q  combinatorially
equivalent to  P.  In particular, one may ask what are the different isomorphism types of
such polyhedra  Q,  what polygons  F  may serve as protofaces for the  Q's,  and how
many distinct polyhedra  Q  there are for a given protoface  F.  Various results on these
and similar questions were presented by the author in talks and courses at the University
of Washington since 1990; detailed expositions are planned.  These results include the
following.

(1) Every triangle is the protoface of a convex monohedral polyhedron
combinatorially equivalent to the regular octahedron.  Moreover, every monohedral
acoptic polyhedron combinatorially equivalent to the regular octahedron is isohedral.
Each scalene acute triangle is the protoface of four distinct monohedral octahedra; if
symmetry groups are taken into account, these four are of two distinct isomorphism
types.  Additional information is contained in the dynatogram in Figure 23, in which the
parameters  a  and  b  are the sides of the triangular protoface, with  a ≤ b ≤ c = 1,  and in
the "panorama" in Figure 24.  For parameter values in  E  and  G,  one of the polyhedra is
weakly acoptic but not acoptic.  If  P  is a simplicial convex polyhedron such that every
triangle is the protoface of a monohedral convex polyhedron combinatorially equivalent
with  P,  then  P  is combinatorially equivalent to the regular octahedron.50

(2) Banchoff's original question about monohedral acoptic polyhedra of the
combinatorial type of the regular icosahedron is much more complicated, and is not fully
answered.51  It is known that there are many distinct isomorphism types, even if only

                                    
48 One particularly attractive open question concerning monohedral tilings is
whether the prototile of some such tiling is aperiodic, that is, every monohedral tiling
with this prototile has no symmetries besides the identity.  Analogously, it is not known
whether there exists a polygon  F  such that every acoptic monohedral polyhedron with
protoface  F  has only the identity symmetry.
49 Private communication, some twenty years ago.
50 For some of these results see also Webber [W1].
51 The convex ones among them were investigated by E. Miller, in an undergraduate
research project directed by Banchoff.  Among Miller's results is the discovery that a
unique convex icosahedron has a right-angled protoface.  A publication is being prepared
[M9].
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those polyhedra are considered which have three mutually orthogonal axes of halfturn
symmetry.  As indicated in Figure 25, these polyhedra have nine transitivity classes of
edges, but all faces are equivalent under (combinatorial) automorphisms compatible with
the orbits of the edges.  A dynatogram for such polyhedra, obtained by numerical
calculations, is shown in Figure 26.  It shows, among other facts, the possibility of two
distinct convex polyhedra with the same scalene protoface; this shows that the
formulation of Cauchy's rigidity theorem has to be formulated more carefully than is
often done.  Many of the polyhedra of this kind are visually quite attractive, as shown by
the examples in Figure 27.  However, many additional types of monohedral icosahedra
with other symmetries are possible; so far these have been explored only superficially.
Several examples with isosceles triangles as protofaces are shown in Figure 28.

(3) There exist convex polyhedra for which no isomorphic polyhedron is
monohedral.  An example is shown in Figure 29(a).  It is realizable by a weakly convex
monohedral polyhedron, but the polyhedron in Figure 29(b) admits no such realization.
The polyhedron in Figure 30 admits no realization as a monohedral acoptic polyhedron.
All these are the smallest examples of their kind known to me.

(4) For any given triangle  T  the number of monohedral convex polyhedra
with protoface  T  is finite, but for suitable  T  it can be arbitrarily large.

In this context we also have the following

Conjecture.  If  f > 120  there are at most three convex monohedral polyhedra
with precisely  f  faces.

A different direction concerns the study of monohedral tori, which was started by
Alaogly and Giese [A1].  They describe 6-valent triangle-faced as well as 4-valent
quadrangle-faced monohedral tori.  Additional examples can be found in [S13].  Recently
Webber [W1] has developed methods of construction of many interesting kinds of 6-
valent triangle-faced monohedral tori.  Webber's tori can have arbitrarily large numbers
of faces, and even can be knotted.  It is interesting to note that the question whether there
exist monohedral tori with hexagonal protoface is still open.52

                                    
52 It may be mentioned that the isogonal acoptic tori described in [G14] and [G11],
with vertex symbols  (3.3.3.3.3.3),  have polars which are 3-valent monohedral (even
isohedral) realizations of hexagon-faced toroidal maps; however, these polar polyhedra
are not acoptic, see [G16].
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Conjecture.  There exist no monohedral acoptic polyhedra of genus greater than
1 in which all vertices have the same valence.

9. Spanning trees.  Barnette [B3] proved that each toroidal convex-faced
acoptic polyhedron has a spanning tree of maximal valence 3.  Does this extend to
polyhedra of higher genus, or to more general acoptic polyhedra without overarching
elements ?  As can be seen from Figure 31, an extension is not possible without some
conditions on overarching elements.  Earlier, in [B1], Barnette established the existence
of such trees for convex polyhedra.  In this context, an old question from [G6, p. 1148],
which would extend Barnette's result, may be mentioned:

Conjecture.  Every convex polyhedron admits a spanning tree of maximal
valence 3 such that in the dual polyhedron there is a spanning tree of maximal valence 3
which uses only edges that correspond to edges not used in the spanning tree of the
starting polyhedron.

With obvious definitions, this can be reformulated as saying that each convex
polyhedron admits simultaneously a spanning vertex-tree and a spanning face-tree, both
of maximal valence 3 and with no edge used in both.  In this version it is possible to
inquire what happens for convex-faced toroidal polyhedra, or for other classes of
polyhedra.

* * * * *

Many additional topics, results and problems dealing with acoptic polyhedra
could have been included in the above discussion.  Although limitations of time and
space  require us to stop, it is our hope that the presentation will arouse the curiosity of
the reader concerning the many questions about acoptic polyhedra –– whether posed
above or not –– and lead to interesting new developments.
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Figure 1.  The continuum of isohedral acoptic polyhedra of type [3.3.3.3.3] with a plane
of symmetry, starting with a weakly convex polyhedron isomegethic with the rhombic
dodecahedron, and ending with a weakly acoptic  polyhedron.  The protoface of each
polyhedron is shown below a perspective view of the polyhedron itself.  Unfamiliar terms
(italicized) are explained later in the text.
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(a)

(b)

Figure 2. Examples of (a) simple polygons, and (b) polygons which are not simple.
All polygons shown are pentagons.

Figure 3. Examples of the three combinatorial types of acoptic hexahedra that
cannot be represented by convex polyhedra. One polyhedron of each type is shown in
perspective view in the top row.  Beneath each is shown a "pseudo-Schlegel" diagram,
which gives a planar view of the combinatorial structure of the polyhedron.  Pseudo-
Schlegel diagram of this kind are possible for all acoptic polyhedra of genus 0.
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Figure 4. Representatives of the 17 types of acoptic heptahedra known to the author;
they may be conjectured to be the only possible types.  The first 16 have genus 0, and are
shown by pseudo-Schlegel diagrams; all are easily derivable from the tetrahedron.  The
last polyhedron is toroidal, and is shown in a perspective view.



Page 32

Figure 5. Examples of weakly acoptic polyhedra which are not acoptic.

Figure 6. Two combinatorially equivalent acoptic heptahedra.  In many geometric
respects they are sufficiently different to be distinguished in a classification finer than the
one by combinatorial type -- they are not isomorphic.

Figure 7. Two isomorphic but not equiform acoptic polyhedra of genus 2.
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Figure 8. Two convex polyhedra that have the same symmetry group and are
equiform, but are not symmetrically equiform since they cannot connected by a
continuous family of isomorphic polyhedra with the same symmetry group.

•

Figure 9. Examples of "polyhedral solids" which are not polyhedra under our
definitions, since not all their "faces" are simply-connected or limits of simply connected
polygons.
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Figure 10. An example of a weakly convex polyhedron.  The point set determined by
the polyhedron and its interior is convex, but the facial structure of this convex
polyhedron does not coincide with the given weakly convex one.  The polyhedron is
isomegethic to a cube.

      (a)   (b)

Figure 11.  An acoptic isogonal icosahedron and an acoptic isohedral dodecahedron
which can be considered dual to each other in a correspondence under which
corresponding elements have analogous convexity character.  However, no general
duality theory exists which acts on all acoptic polyhedra under preservation of the
convexity character of corresponding elements.
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Figure 12. The 21 irreducible triangulations of the torus.  In each part, the standard
identification of the top and bottom, and of the side margins, yields the toroidal
triangulation.
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Figure 13. The Ljubic' torus, an acoptic realization of the 9-face quadrangulation
shown top right, that is not realizable by convex-faced acoptic polyhedra.
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Figure 14. Three maps without overarching elements, for which it is not known
whether they can be realized by acoptic polyhedra. The first two are toroidal, the last has
genus 2 and appears in [P1] as an example in a different context.
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Figure 15. Several isogonal tori that realize the regular map  {3,6}2,2.  All are acoptic
except the first and the last, which are weakly acoptic.

Figure 16. A snub cube  (3.3.3.3.4), with notation for its vertices, and with indication
of a parametrization of the vertices which is convenient for isogonal polyhedra of this
combinatorial type.
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Figure 17. Dynatogram for acoptic isogonal polyhedra of combinatorial type of the
snub cube, (3.3.3.3.4).  The parameters  a  and  b  determine the coordinates of the
vertices, as shown in Figure 16.  All regions outside of the large circle correspond to
nonacoptic polyhedra, while the polyhedra with parameter values on the circle are weakly
acoptic.  The strings of capital letters near the lines and the circle indicate (in the notation
of Figure 16) examples of sets of coplanar vertices.  The symbols for isogonal polyhedra
near the lines and near three of the vertices of the square indicate to which isogonal
polyhedra the polyhedra of type  (3.3.3.3.4)  are isomegethic (that is, consist of the same
set of points).  The solid dots indicate the parameter values for which the polyhedra of
type  (3.3.3.3.4)  are isomegethic to a uniform (Archimedean) polyhedra.  The uniform
(Archimedean) snub cube  (3.3.3.3.4)  corresponds to the parameter values  a =
0.29955977,  b = 0.5436890.
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Figure 18. A panorama of acoptic isogonal polyhedra combinatorially equivalent to
the snub cube  (3.3.3.3.4).  This panorama corresponds to the dynatogram in Figure 17.
The values of the parameters  a  and  b  are given under each polyhedron.
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(a) (b) (c)

Figure 19. The Boolean sum of the polyhedron in (a) which corresponds to (a,b) =
(1/3,1/6), with the polyhedron in (b) for which (a,b) = (1/3,-1/6), yields the isogonal
acoptic polyhedron in (c); the elimination of the square faces makes the bottom part of
the polyhedron visible in (c).  The polyhedron in (c) is a realization of the regular map
(3,8)12 (which is map #96.162 in Wilson's catalog [W5] of regular maps).

B = (b, a, 1-a)

A = (a, 1-a, b)

C = (1-a, b, a)

D =  (a, a-1, -b)

E =  (-b, a, a-1)

F =  (a-1, -b, a)

G = (-a, a-1, b)

H =  (b, -a, a-1)

J =  (a-1, b, -a)
K = (-a, 1-a, -b)

L = (-b, -a, 1-a)

M =  (1-a, -b, -a)

Figure 20. An icosahedron  (3.3.3.3.3), with notation for its vertices, and with
indication of a parametrization of its vertices which is convenient for isogonal polyhedra
of this combinatorial type.
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Figure 21. Dynatogram for acoptic isogonal polyhedra of combinatorial type of the
icosahedron, (3.3.3.3.3).  As shown in Figure 20, the parameters  a  and  b  determine the
coordinates of the vertices; they are given (in Cartesian coordinates) by all cyclic
permutations of  (±a, ±(1-a), ±b)  with an even number of minus signs.  The similarity of
many features of this dynatogram with the dynatogram of snub cubes in Figure 17 is not
surprising since icosahedra can be interpreted as "snub tetrahedra".  However, since
triangles here play the roles played by both triangles and squares in the case of snub
cubes, polyhedra corresponding to the bottom part of the dynatogram are congruent
mirror images of the polyhedra corresponding to the upper part; polyhedra with  b = 0
have mirror-symmetry.



Page 43

    (a)     (b)

Figure 22. (a)  A monohedral polyhedron which is not isohedral.  It is the polar of the
pseudorhombicuboctahedron.   (b)  An isohedral polyhedron with the same protoface; it
is the polar of the rhombicuboctahedron.

(0,1)

(0,0) (1,0)

(1,1)

b

a

a = b

b = 1

a  + b  = 12 2

AD

BC

E

F

H

G 

Figure 23.  A dynatogram of monohedral (and isohedral) octahedra that have as prototile
a triangle with sides   a ≤ b ≤ c = 1.
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Sides: (0.65, 0.85, 1)

C: Scalene, acute
D: Isosceles, 
acute, apex 
angle < π/3
Sides: (0.7,1,1)

B: Isosceles, acute, apex angle > π/3
Sides (0.9, 0.9, 1)

Sides (0.6, 0.8, 1)
F: Scalene, right-angled

Sides (0.5, 0.7071, 1)
H: Scalene, obtuse

Sides (0.65, 0.65, 1)

G: Isosceles, obtuse

Sides (1,1,1)
A:  Equilateral

Sides (0.707107, 0.707107, 1)

E: Isosceles, right-angled

Figure 24.  A panorama of the monohedral octahedra, corresponding to the dynatogram
in Figure 23.  The panorama is greatly distorted, due to the necessity of accomodating up
to four polyhedra at one location.
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Figure 25.  Notation used in Figure 26, for the edges of one type of monohedral acoptic
icosahedra combinatorially equivalent to the regular icosahedron.  The polyhedra in
question have three mutually perpendicular axes of halfturn symmetry, indicated by the
shaded lines.
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Figure 26.  An empirical dynatogram of the convexity types of the kind of acoptic
polyhedra isomorphic to the regular icosahedron described in Figures 24 and 25..  The
symbols designate the nonconvex edges, in the notation of Figure 25.  The parameters are
the angles of the protoface, and the presentation of the dynatogram is in trilinear
coordinates.
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 27.  Examples of monohedral icosahedra with three mutually perpendicular axes of 2-fold
symmetry.  Each is shown in perspective views from three different direction (close to –– but not
coinciding with –– the three axes of symmetry); concave edges are indicated by dashed lines.  (a)
and  (b)  show the two distinct convex icosahedra having as protoface a 45°-60°-75° triangle.
The protoface in (c) is a 45°-45°-90° triangle, and in (d) a 24.4°-77.8°-77.8° triangle. In both
only the edges of one orbit are concave, but it is a 2-edge orbit in (c) and a 4-edge orbit in (d).
The two icosahedra with a 34°-46°-100° triangle as protoface are shown in (e) and (f); the former
has edges of two orbits concave, while the latter has edges of three orbits concave.
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(a)
(b)

(c)
(d)

(e)
(f)

(g)

(h)

(i)

Figure 28.  Examples of monohedral polyhedra with isosceles triangles as protofaces, and
combinatorially equivalent to the regular icosahedron.  The first six have an axis of 5-fold
rotational symmetry; the axis is taken as vertical, and each polyhedron is presented by
two views in horizontal, mutually perpendicular directions.  The last three polyhedra are
shown in views from three mutually perpendicular directions.  The symmetry groups are:
(a)  [3,5];   (b), (c), (d), (f)  [2,5];   (e)  [5];   (g)  [2,1];  (h)  [2]+;  (i)  [1].   If symmetry
groups are taken into account, all polyhedra shown are of different isomorphism types,
except for (b) and (d);  these two have the same isomorphism type and are equiform but
not symmetrically equiform.
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(a) (b)

Figure 29.  Schlegel diagrams of two convex polyhedra; the polyhedron in (a) does not
have a monohedral realization as a convex polyhedron, while the one in (b) cannot be
monohedrally realized even with a weakly convex polyhedron.

Figure 30.  A Schlegel diagram of a convex polyhedron for which no combinatorially
equivalent acoptic polyhedron is monohedral.

Figure 31.  An acoptic polyhedron of genus 0 with no spanning tree of valence ≤ 3.
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