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A polygon P =[V], Vo, ..., Vy] is aset of vertices Vy, ...,
Vi, together with the n edges (closed segments) E; =[V1,V3], Ex =
[V2,V3], ..., En=1[Vn,Vi]. Such a polygon will often be called an
n-gon, and we shall assume that n = 3. Polygons need not be convex,
but we restrict attention to polygons with the property that no point of
the plane belongs to three or more sides; the main question discussed
here concerns the number x(P) of selfintersection points that an
n-gon P may have. We are interested in x(n), the maximal number
of selfintersections possible in an n-gon, and in X(n), the set of
possible numbers of selfintersections of n-gons.

The investigation of x(P), x(n) and X(n) appears worthwhile
because, on the one hand, it shows how even simple and natural
questions can have complicated answers; on the other hand, the history
of the result is quite intricate and can serve as a warning about the
frequency with which writers practice sloppy thinking — and so
sometimes "establish" fallacies as facts. In a sequel to this note we
shall consider the analogous questions for n-arcs, which are objects
similar to n-gons but in which instead of straight edges we may use
arcs of curves satisfying certain natural conditions.

It is not hard to verify that X(3) = {0}, X(4)={0, 1},
X(5)={0,1,2,3,5} and X(6) = {0, 1,2, 3,4,5,6,7 }, hence
x(3)=0, x(4)=1, x(5 =5, x(6) =7. These assertions are illustrated
in Figure 1. The complete characterization of x(n) and X(n) is
given by the following result.

Theorem 1. If n is odd then x(n) = % n(n —3) and X(n) is the set
of all integers from 0 to x(n) except x(n)— 1; if n is even then
X(n) = ;— n(n—-4)+ 1 and X(n) is the set of all integers between 0
and x(n).

Before proving this theorem, here is a survey of its history.
The first author (as far as I know) to consider the problem in print was



Baltzer [1] in 1885; he found the correct value of x(n) for odd n, but
he mistakenly thought that x(n) = (‘5 ) = %(n2 —5n+ 6) foreven
n, and gave a description of X(n) that was incorrect for all n = 6.
Baltzer's error was caused by his belief that in order to obtain an
n-gon P with x(P) = x(n), when drawing P each new edge must
intersect all previously drawn ones. This mistake was noted by Brunel
[4] in 1894, who stated (without proof) the correct value of x(n) and
described the construction of polygons yielding all values in X(n) for
n =2 (mod 4), saying that similar constructions apply in the other
cases. Bruckner [3, pp. 10 — 12] in 1900 gives constructions for all
values in X(n) and states the correct values of x(n) for all n;
however, he does not seem to feel there is need to prove that the given
value of x(n) for even n is indeed maximal. This incompleteness in
Briickner's treatment was observed by Steinitz [9, Section 4] in 1916.
In 1923 Steinitz [10] finally gave the complete solution, including both
the characterization of X(n) and the constructions. Later chapters in
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Figure 1. Examples of polygons with all possible values of x(P), for
n-gons with n < 6. The crossing points are indicated by open circles.



the history of this topic include: A brief account of the problem in
Lietzmann [7, Chapter 5], which ignores Steinitz [10] and asserts that
the result has not been established for even n. Unaware of Steinitz's
result, Bergmann [2] and Furry & Kleitman [6] independently proved
Theorem 1. Unaware of all previous work, S klyarskii, Cencov &
Yaglom [8, Problem 21] determined the value of x(n). The proof
below follows their arguments, which are much simpler than those of
the other authors. The inductive construction of the polygons that
establish the existential part of the theorem was inspired by the
constructions of Woodall [11] in a somewhat different context.

Proof of Theorem 1. Since each edge of the n-gon P can intersect at
most n — 3 other edges, we have x(P) < n(n—3)/2. Thus x(n) <
n(n—3)/2 forall n, and since x(P) =n(n-3)/2 if n=2k + 1 is odd
and if P is a suitable star—polygon (specifically, if P is the regular
star-polygon usually denoted by {n/k}, see Figure 2), the value of
x(n) for odd n is as claimed.

Let now n be even; we shall prove by induction from n to
n+ 2 that x(n) =1 + n(n — 4)/2; the assertion is obvious for n = 4.
We shall assume that an (n + 2)-gon P is given which has more than
xn+2)=1+Mm+2)(n-2)2= % n2 — 1 selfintersections, and we
shall derive a contradiction to the inductive assumption. We consider
each of the n + 2 "horns" of P, where a "horn" is the union of two
adjacent edges of the polygon. At least one of the horns of P must
contain at least 2n — 3 of the selfintersections; indeed, otherwise P
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Figure 2. Regular polygons {7/3} and {9/4}, which are examples of
polygons with odd numbers of vertices and maximal number of
crossing points.



would have at most t(n +2)2n —4) =3 n2-2<z n -1

selfintersections. Let H = E; U E; be a horn containing at least
2n - 3 selfintersections; then at least one of the edges forming the horn
must contain at least n— 1 selfintersections of P. Let E; be such an
edge. It must contain at most (n+2) -3 =n-1 selfintersections of
P; hence it contains precisely n — 1. This means that it intersects all
edges that are not adjacent to it, and in that case, since n + 2 is even,
it follows that the edges adjacent to Ej are on opposite sides of the
line determined by Ej. If E; contains n — 1 selfintersections, it
follows that E» can contain at most n — 2 selfintersections since Ep
cannot meet the other edge adjacent to Ej. Thus the horn H contains
precisely 2n —3 selfintersections of P, and without loss of generality
we may assume that H and the neighboring edges (labelled Ep and
E3) of P have mutual relationship as indicated in either Figure 3(a) or
in Figure 3(c). The two cases differ in the relation of the line L,
determined by the edge E( (which precedes Ej), to the edge E>: in
the first case L meets Ep, in the second it misses Ej. (Since the
number of selfintersections of an ordinary polygon is not changed by
sufficiently small displacements of the vertices of P, we may assume
that no line determined by two vertices of P passes through a third
vertex of P.)

In the first case (see Figure 3(a)) we delete from P the vertices
V1, V2, V3 and the edges incident with them, and from the remaining
parts of P we form an n-gon P* by adjoining the vertex W and the
edges [V, W] and [W, V] (see Figure 3(b)). To estimate the loss in
the number of selfintersection points arising from the replacement of
P by P* we note that besides the loss of the 2n — 3 intersections
with H we only have to take into account those intersections that
occur on the part of E3 thatis between W and V3. But each edge of
P that intersects [W, V3] must also intersect both E; and E,, and
therefore it must intersect L in [Vg, W], hence it does not contribute
to the net loss of selfinteIrsections. Thus the n—gon P* satisfies
x(P*) =x(P) - (2n - 3) > 5 n?2-1 -(2n-3)>5 n(n-4)+1=x(n),
contradicting the definition of x(n); hence this case cannot arise.

In the second case (see Figure 3(c)), the vertices Vo, Vi, V3,
V> (taken in this order) determine a convex quadrangle; hence each



edge that intersects Eg and E; must also intersect the diagonal [V,
V3] of the quadrangle. Therefore, replacing Eg, V1, E1, V2, Ep, by
the edge [V, V3] (see Figure 3(d)) we obtain an n-gon 1P>I< for
which x(P*) 2 x(P) - (2n-3)-1> 5 n2-1-2n+2= 5 n(n -
4)+ 1 =cp; the —1 in the second step is to account for the possible
loss of an intersectipn point of Ey and E3. The contradiction reached
shows that x(n) < 5 n(n—4) + 1 for all even n. To establish equality

e shall now show that for each even n >4 there exist n—gons with
5 n(n—4) + 1 selfintersections.

Actually, we shall show, by induction from n to n + 2, that
for even n and for each integer k with 0 <k <x(n), there exists an
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Figure 3. Illustration of the argument used in the proof of the upper
bound in Theorem 1 for even n; (a) and (b) refer to the first case, (c)
and (d) to the second case.



n-gon P with x(P) =k. As shown by easy examples (compare Figure
1), this is certainly true for n =4 and n = 6. Moreover, we shall
show that there exists an n-gon P, such that x(P,) = x(n), and that
an edge E of P, has the properties:
(i) the edges of P, adjacentto E are on opposite sides of E;
(ii)) E crosses the maximal possible number n — 3 of edges of Py,

The polygons P4 and Pg, and an edge of each that can be
chosen as E, are shown in Figure 1; the special edge is heavily drawn.
Now the inductive step from n to n + 2 is very simple (compare
Figure 4): The edge E =[V{,V2] (in Figure 4(a)) may be replaced,
arbitrarily close to E, by a polygonal path formed by new vertices
Wi and W3, and three edges E;, Ep, E3, such that each of the new
edges intersects all the edges that were intersected by E, and intro-
duce either four (Figure 4(b)) or three (Figure 4(c)) additional intersec-
tions. Applied to P, the first operation yields an (n + 2)-gon Ppip
Wlth X(Pp42) =x(Pp) -(n=3)+3(n-3)+4=1+nn-4)/2+2n-2
= 3 n? — 1 = x(n+2), in which the edge E, = [W{,W2] may be
chosen as E. This completely establishes the bound x(n). We note
that the net gain in the number of selfintersections is 2n — 2, and
observe that by suitably "lowering" W, and/or "raising" Wi, we
can reduce this added number of selfintersection by an arbitrary even
integer. Similarly, the procedure indicated in Figure 4(c) increases
the number of selfintersections by 2n — 3, and its modifications
increase itby 2n-35, ..., 3, or 1. Hence we can obtain (n + 2)—gons
having
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Figure 4. Illustration of the construction used in the existence part of
Theorem 1 for even n.



any desired number of selfintersections between x(n) and x(n+2). To
obtain (n + 2)-gons with any number of selfintersections that does not
exceed x(n) we can take an appropriate n—gon and replace one of its
edges by a suitable chain of three edges. Thus all assertions of
Theorem 1 concerning even n are proved.

We return now to the case of odd n = 2k+1. As mentioned
earlier, the star-polygon {n/k} can be taken as a polygon P, that
attains the bound x(n). In order to obtain from it the (n + 2)—gons
required in the theorem we proceed in analogy to the even case, but
with a modification caused by the fact that now P, has no edge E of
the type used above. Instead, P, has an edge E that intersects n —3
other edges of Pp, for which the edges adjacent to it are on the same
side of E (see Figure 2). We shall again replace such an E by a
chain of three edges, each of which is intersected by all edges of P
that intersect E, and which introduce either 5 or 2 additional
selfintersections (see Figure 5). By suitably "lowering" W7 and/or
"raising" W] we can obtain (n + 2)-gons with any number of
selfintersections between x(n) and x(n) —(n—3) +3(n—-3)+ 5 =
nn-3)2+2n-1=(n+2)(n-1)/2 =x(n+2), except x(n+2) — 1.
Moreover, the edge E; = [W1, W3] can be chosen as E for Ppyo. As
in the previous case, (n + 2)-gons with any number of
selfintersections up to x(n) (except x(n) — 1) can be obtained from
n-gons with the same number of selfintersections by adding vertices,
while an (n + 2)-gon with x(n) — 1 selfintersections results from an
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Figure 5. Illustration of the construction used in the existence part

of Theorem 1 for odd n.



n—gon with x(n) — 2 selfintersection on replacing an edge by the
chain of three edges shown in Figure 6. This completes the proof of
the theorem for odd n, except for the assertion that for such n no
n—gon has precisely x(n)—1 selfintersections.

Most writers (in particular, Baltzer, Brunel, Bruckner and
Steinitz) consider that last assertion obvious — although I cannot say
why (except possibly because one cannot obtain such a polygon by
reducing by 1 the number of selfintersections in a star-n—gon Py
with x(n) selfintersections). A proof may be derived from the
observation that if P* is an n-gon (with odd n ) such that x(P*) =
x(n) — 1 then P* contains precisely one pair of non-adjacent edges
E', E" that do not cross each other. Then, similarly to the arguments
in the main part of the proof, we have to consider two cases: either E'
and E" are opposite edges of a convex quadrangle, or the line
determined by one (say E') crosses the other. In either case, the line
L determined by E" does not meet E'. Since n is odd, one of the
two polygonal arcs that connect E' to E" in P* contains an even
number of edges, say [Vo, V1l, [V1, V2l, ..., [V2j-1, V2jl, where Vo
is an endpoint of E" and Vp; of E'. Since all but the last of these
edges intersect E', the vertices Vi, V3, ..., are on the same side of L
as E', and Vj, V4, ..., V2j on the opposite side — contradicting the
choice of Vj; as being an endpoint of E'.

This completes the proof of Theorem 1.

A recent result of Cairns & King [5] states that for each odd
n = 2k+1 there is a unique type of polygons P with combinatorial
symmetries that are compatible with the order of intersections on all
the edges, and for which x(P) = x(n); all such P are distortions of the
regular polygon {n/k}. As is easily seen, without the combinatorial
symmetry assumption there are, for each n > 7 and each x € X(n),
x # 0, essentially different types of n-gons P with x(P) =x.
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Figure 6. Illustration of the construction used in the existence part
of Theorem 1 to obtain (n + 2)—gons with x(n) — 1 selfintersections,
for odd n.
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