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Abstract. The theorems of Ceva and Menelaus are concerned with cyclic products of ratios of lengths
of collinear segments of triangles or more general polygons. These segments have one endpoint at
a vertex of the polygon and one at the intersection point of a side with a suitable line. To these
classical results we have recently added a ‘selftransversality theorem’ in which the ‘suitable line’
is determined by two other vertices. Here we present additional ‘transversality’ properties in which
the ‘suitable line’ is determined either by a vertex and the intersection point of two diagonals, or by
the intersection points of two pairs of such diagonals. Unexpectedly it turns out that besides several
infinite families of systematic cases there are also a few ‘sporadic’ cases.
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1. Introduction

One of the most familiar theorems of affine geometry is Menelaus’ theorem that
states (see Figure 1) that if a transversal cuts the sidesBC;CA;AB (extended if
necessary) of a triangle [A;B;C] in the pointsD;E; F respectively, then
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Each term is the ratio of the lengths of the stated line segments, and the double lines
indicate thatsigned lengthsare to be used – thus ifX;Y;Z are distinct collinear
points, thenkXY=Y Zk is positive if Y lies betweenX andZ, and is negative
otherwise.

Menelaus’ Theoremis the first, and one of the simplest, of a large class of
theorems concerning polygons or higher-dimensional objects in affine spaces. For
one of these, letP = [V0; V1; : : : ; Vn�1] be a polygon inA d , affine space of
d dimensions. Suppose that on each edge or chord[Vi; Vi+m] of P a pointWi is
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Figure 1. The theorem of Menelaus: the product of the ratios of signed lengthskBD
DC

k �kCE
EA

k �

kAF
FB

k equals�1.

defined in some geometrically significant way. Then, under suitable conditions that
need to be made explicit,

Y
ViWi

WiVi+m

 = constant: (1)

Here and throughout, we adhere to the following conventions: the product is from
i = 0 to i = n � 1, all subscripts are to be reduced modulon, all the sides and
chords are to be extended as necessary so the required intersections exist, and all
the points in the construction must be in sufficiently general position so that the
left side of (1) is defined. The constant will always turn out to have the value+1
or�1.

For example, letP be ann-gon (n > 3) in A
d (d > 2). If F is a (d � 1)-flat

(affine subspace of dimensiond� 1), andF meets the edgeViVi+1 of the polygon
P in Wi, then (1) holds with constant equal to(�1)n. This is a generalization of
Menelaus’ Theorem ton-gons inAd due to Carnot [C1] ford = 3. As another
example supposen = 5, the pentagonP = [V0; V1; V2; V3, V4] lies in A

3, andWi

is defined as the intersection of the edgeViVi+1 with the plane containingVi+2,
Vi+3, Vi+4; then (1) holds. Additional examples of theorems of this kind can be
found in [GS1], [GS2], [GS3].

Here we present two new results of which typical instances are are shown
in Figure 2. OurFirst Transversality Theoremis illustrated in Figure 2(a) for a
pentagon. For eachi, if Zi is defined as the intersection of the chordsVi+1Vi+3 and
Vi+2Vi+4, andWi+2 as the intersection ofViZi andVi+2Vi+3, then (1) holds with
constant equal to 1.

Figure 2(b) illustrates theSecond Transversality Theoremalso for a pentagon.
For eachi, if Zi is the intersection ofViVi+2 with Vi+1Vi+4, Yi is the intersection
of ViVi+4 with Vi+1Vi+2, andWi is the intersection ofYiZi with ViVi+1, then (1)
holds with constant equal to 1.
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SOME NEW TRANSVERSALITY PROPERTIES 181

Figure 2. (a) The First Transversal Theorem 5(2; 1,�2)= 5(3; 3, 1). Here�k ViWi

WiVi+1
k = 1.

(b) The Second Transversal Theorem 5(1; 1,�1; 0, 2)= 5(1; 0,�2; 0,�4), Type 2(i). Here
the same relation�k ViWi

WiVi+1
k = 1 holds.

The two transversality theorems, together with the Selftransversality Theorem of
[GS1], form a natural sequence. In each case two points define a transversal which
cuts the side or chordViVi+m of P in Wi. In the case of the Selftransversality
Theorem the two points are vertices ofP ; in the First Transversality Theorem one
point is a vertex ofP and the other is the point of intersection of two chords ofP ; in
the Second Transversality Theorem both points are defined as points of intersection
of chords ofP . All these theorems relate to polygons in the affine planeA

2.

geom1556.tex; 1/06/1998; 11:27; v.7; p.3
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As all the results of this paper belong to plane affine geometry, at first sight there
seems no good reason why they were not discovered years, or even centuries, ago.
The explanation is simple: we have the advantage, denied to earlier investigators,
of sophisticated computer programs, in particular Mathematicar software on a
Macintosh computer. Use of these programs led to large numbers of empirical
results, some of which are listed in the table at the end of this paper. Examination
of these suggested that, apart from a few anomalous or sporadic cases that arise
for small values ofn, all are covered by four theorems, each with several cases
depending on one or two parameters. Because the computer search was exhaustive
we can say even more: at least forn 6 20 our theorems cover all possible cases,
and there is heuristic evidence that this is true for all values ofn. The anomalous
cases that arise for small values ofn (‘small’ here meansn 6 16) seem to occur
because of ‘accidental’ congruences between the parameters.

The proofs given below depend essentially on what we call the Area Principle.
Although this method of argumentation is very old – according to Baptist [B, p. 61],
A. L. Crelle used it in 1816 in his book [C3] – it has been reintroduced in [GS1], and
independently by Chouet al.[C2]. In these and other publications the Area Principle
and its variants have been found to be very useful mathematical techniques. Here
we use them to prove a fundamental result, theElimination Lemma, which enables
many of our proofs, which are essentially manipulative in nature, to be made more
concise.

The paper is organized as follows. In Section 2 we give precise definitions of
the transversality properties, and introduce appropriate notation. Section 3 presents
the Area Principle and the Elimination Lemma. The main results are formulated
and proved in Section 4 and Section 5 is devoted to remarks and comments.

Further examples of the First Transversality Theorem are shown in Figure 7,
and of the Second Transversality Theorem in Figures 3, 4, 5 and 6. The notation
used in the captions to these figures will be explained in Section 2.

2. The Transversality Properties

THE FIRST TRANSVERSALITY PROPERTY n(m; r; s), see Figure 8.Let
P = [V0; V1; : : : ; Vn�1] be a givenn-gon in the affine plane andm; r; s be given
integers(parameters). For eachi = 0;1; : : : ; n�1 let the intersection of the chords
Vi�rVi�s andVi+rVi+s be denoted byZi, and let the transversalViZi meet the
base chordVi�mVi+m in Wi. Then, for suitable values of the parameters,

Y
Vi�mWi

WiVi+m

 = 1: (2)
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SOME NEW TRANSVERSALITY PROPERTIES 183

In Theorem 1 we state explicitly the values of the parametersm; r ands for
which the transversal propertyn(m; r; s) is true, that is, (2) holds. An example of
the property 7(2; 1, 2) is shown in Figure 7.

THE SECOND TRANSVERSALITY PROPERTYn(m; r; s; t; u), see Figure 9.
LetP = [V0; V1; : : : Vn�1] be a givenn-gon in the affine plane andm; r; s; t; u be
given integers(parameters). For eachi = 0;1; : : : ; n�1 let the intersection of the
chordsVi�rVi�s andVi+m+rVi+m+s be denoted byZi, and the intersection of the
chordsVi�tVi�u andVi+m+tVi+m+u be denoted byYi. Let the transversalYiZi

meet the base chordViVi+m in Wi. Then, for suitable values of the parameters,

Y
ViWi

WiVi+m

 = 1: (3)

As before, we place no restrictions onP other than that the lines in the figure and
the fractions in (3) are well-defined. In Theorems 2, 3, 4 and 5 we state explicitly
the values of the parametersm; r; s; t; u for which the second transversal property
n(m; r; s; t; u) is true, that is, (3) holds. Examples 5(1; 0,�2; 0,�4), 11(1; 0, 1;
3, 4), 7(1; 0, 2; 0, 4), 8(1; 0, 1; 2, 3), and 9(3; 0,�1;�1, 1) are shown in Figures
2b, 3, 4, 5, 6.

In both transversality properties the polygons are quite general: vertices may
coincide and edges may cross or overlap. The only restrictions are that each line
or chord under consideration must be specified by two distinct points, and that
the denominators in (2) and (3) must not vanish. The ‘appearance’ of the figures
illustrating the properties depend, of course, on the choice of initial polygon. For
example, Figure 10 illustrates the second transversal property 5(1; 0, -2; 0, -4)
which is the same as that shown in Figure 2(b).

All the results of this paper properly belong to affine geometry since they are
invariant underaffinities, that is, nonsingular linear transformations combined with
translations. Equivalently, affinities may be defined as projective transformations
which leave the line at infinity fixed.

The notationsn(m; r; s) andn(m; r; s; t; u) for the transversality properties are
very useful, but suffer from the disadvantage that they are not unique. For example,
as noted in the caption, the second transversality property shown in Figure 2(b)
may be denoted by 5(1; 1,�1; 0, 1) or 5(1; 0,�2; 0,�4). But there are many other
possibilities also such as 5(1; 0,�4; 1,�1), 5(1; 0,�2;�1,�2) and so on. Also
5(2; 0, 1; 1,�2) represents the same property for the pentagram[V0; V2; V4; V1; V3]
and therefore is not considered distinct. Checking for repetitions is therefore not
trivial, and is probably best achieved by making a sketch of the configuration.
In the table at the end of the paper all repetitions have been excluded, as have
non-primitivecases. We say that a property isprimitive if the HCF (GCD) of
the parameters (n;m; r; s in n(m; r; s) or n;m; r; s; t; u in n(m; r; s; t; u)) is 1. A
nonprimitive assertion, for which the HCF of the parameters isd > 1, is really a
trivial consequence of the corresponding property for an(n=d)-gon.
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184 BRANKO GRÜNBAUM AND G. C. SHEPHARD

Figure 3. The Second Transversality Theorem 11(1; 0, 1; 3, 4), Type 2(iv).

In Figure 2, and all subsequent figures illustrating the transversality properties,
we follow the convention that the transversal (ViZi for the first andYiZi for
the second transversal property) is indicated by a dotted line, and the base chord
(Vi�mVi+m for the first andViVi+m for the second transversal property) is indicated
by a heavy line.

3. Preliminaries

We make use of two basic results which are variants of the area principle [GS1].

APB: The Area Principle for triangles with equal bases.This states thatthe
areas of two triangles with equal bases are in the same ratio as their heights. For
example, in Figure 11, the shaded triangles have the same base [BC]; APB asserts
that






A1P

A2P





=






A1BC

A2BC





:

Since we are using signed lengths forA1P;A2P and also signed areas for the
triangles (the area of a triangle is positive if it is oriented counterclockwise, and
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SOME NEW TRANSVERSALITY PROPERTIES 185

Figure 4. The Second Transversality Theorem 7(1; 0, 2; 0, 4), Type 2(i).

Figure 5. The Second Transversality Theorem 8(1; 0, 1; 2, 3) Type 2(iv).
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Figure 6. The Second Transversality Theorem 9(3; 0,�1;�1, 1) Type 2(ii).

negative if oriented clockwise) as is indicated by the double lines, APB is true
whetherA1; A2 lie on the same, or opposite sides of BC.

APH: The Area Principle for triangles with equal heights.This states thatthe
areas of two triangles with equal heights are in the same ratio as the lengths of
their bases. For example, in Figure 12, the shaded triangles have the same apexA,
and so have equal heights; APH asserts that






B1C1

B2C2




 =






AB1C1

AB2C2




 :

Using APB and APH we can now prove the following fundamental lemma:

THE ELIMINATION LEMMA. Let P = [V0; V1; : : : ; Vn�1] be ann-gon,A =

VdVe \ VfVg andB;C be any points not onVdVe or VfVg (seeFigure 13).Then







VdAB

VfAC






=







VdVeB

VfVgC






�







VfVgVd

VeVdVf






:
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SOME NEW TRANSVERSALITY PROPERTIES 187

Figure 7. The First Transversality Theorem 7 (2; 1, 2) (sporadic), To avoid clutter not all the
pointsWi are labelled.

Figure 8. Explanation of the notationn(m; r; s) for the First Transversality Property.

Proof.By APB applied to triangles with base[VfVg] and apexesVe; Vd,







VgVfVe

VfVgVd






=






AVe

VdA




 :
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188 BRANKO GRÜNBAUM AND G. C. SHEPHARD

Figure 9. Explanation of the notationn(m; r; s; t; u) for the Second Transversality Property.

Figure 10. The Second Transversality Property 5(1; 0,�2; 0,�4), Type 2(i). This is the same
case as that shown in Figure 2(b). It illustrates the different appearance of the diagram when
one starts from a different polygon.
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Figure 11. The Area Principle APB.

Figure 12. The Area Principle APH.

Adding 1 to each side we obtain






VgVdVfVe

VfVgVd






=






VdVe

VdA




 ;

where the numerator on the left is the (signed) area of the quadrangle[Vg; Vd; Vf ; Ve]

= [Vg; Vf ; Ve] [ [Vf ; Vg; Vd], and so






VgVdVfVe

VfVgVd






=






VdVeB

VdAB




 (4)
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Figure 13. The Elimination Lemma.

by APH applied to triangles with bases[Vd; Ve] and[Vd; A] with the same vertex
B.

In an exactly similar manner we obtain






VdVfVeVg

VeVdVf






=







VfVg

VfA






=







VfVgC

VfAC






: (5)

Dividing (5) by (4) the areas of the quadrangles cancel, and this yields






VdAB

VfAC






=







VdVeB

VfVgC






�







VfVgVd

VeVdVf






:

as required. This completes the proof of the Elimination Lemma.
The purpose of the lemma is to reduce the quotient on the left, which involves

As;Bs;Cs andV s to the expression on the right which involvesBs;Cs andV s
only. In other words, the As have been eliminated. Repeated use of this lemma
enables us to express products of ratios involving points which are intersections of
chords in terms ofV s (the vertices of the polygon) only.

4. The Main Theorems

THEOREM 1. The first transversality propertyn(m; r; s) is true in at least the
following cases:

(i) n(3; 1;�2)(n = 5 or n > 7))
(ii) 5(2; 1, 2), 7(2; 1, 2)and8(2; 1, 5).

The three cases in (ii) are sporadic; that in (i) is the general case which holds for
the values ofn indicated. As stated in the Introduction, we believe that Theorem 1
covers all cases in which the first transversal theorem is true. However due to the
fact that the notation is not unique, as indicated earlier, great care must be taken

geom1556.tex; 1/06/1998; 11:27; v.7; p.12
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Figure 14. Theorem 1.

in checking individual cases to avoid repetitions. For example, a computer search
for n = 9 yielded three cases, namely 9(3; 1, 4), 9(3; 1,�2) and 9(3; 2, 5). In
fact, these are all the same as the general case 9(3; 1,�2). For the first, rename the
vertexVi asV 0

2i – this is equivalent to applying the transversal property 9(3; 1, 4)
to the (9/2)-gonP 0

= [V 0

0; : : : ; V
0

n�1]. Then 9(3; 1, 4) becomes 9(6; 2, 8) which is
the same as 9(3; 2,�1) or 9(3; 1,�2). For the third case 9(3; 2, 5) renameVi as
V 0

5i; then 9(3; 2, 5) becomes 9(15; 10, 25) which is the same as 9(3; 1,�2). Exactly
similar considerations apply to all casesn > 7.

Proof.First consider the regular case (i). Since

Zi = Vi�1Vi+2 \ Vi+1Vi�2

it follows thatZi�1 andZi�2 lie on the lineViVi�3 (see Figure 14). Then, trivially,

1 =
Y

ViVi�3

Zi�1Zi�1

 �
Y

Zi�1Zi�2

ViVi�3

 ;

=
Y

ViVi�3Zi

Zi�1Zi�2Zi

 �
Y

Zi�1Zi�2Zi�3

ViVi�3Zi�3



by APH applied to triangles with apexesZi andZi�3 and bases on the lineViVi�3.
Rearranging,

1 =
Y

ViVi�3Zi

ViVi�3Zi�3

 �
Y

Zi�1Zi�2Z1�3

Zi�1Zi�2Zi

 : (6)

The second product clearly takes the value 1 since the same triangles occur in the
numerator and denominator as one can see by making the substitutioni! i+1 in
the numerator. For the first product we obtain, by making the substitutioni! i+3
in the denominator

1 =
Y

ViVi�3Zi

Vi+3ViZi

 =
Y

Vi�3Wi

WiVi+3

 ;
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Figure 15. Theorem 1.

Figure 16. Theorem 1.

where the second equality follows by APB applied to triangles with base[Vi; Zi]
and apexesVi�3; Vi+3. This completes the proof of (i). Notice that the value ofn

played no part in the calculation, except thatn = 3; n = 4 are clearly excluded,
andn = 6 is excluded because then the chord[Vi�3; Vi+3] is not defined.

For the first two sporadic cases in (ii), namely 5(2; 1, 2) and 7(2; 1, 2),






Vi�2Wi

WiVi+2




 = �






ViZiVi�2

ViZiVi+2






by APB applied to triangles with base[ViZi] and apexesVi�2; Vi+2 (see Figure 15).
Now apply the Elimination Lemma withd = i�2; e = i�1; f = i+2; g = i+1,
A = Zi; B = C = Vi, to obtain,






Vi�2ZiVi

Vi+2ZiVi





=






Vi�2Vi�1Vi

Vi+2Vi+1Vi





�






Vi+2Vi+1Vi�2

Vi�1Vi�2Vi+2




 :
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Hence

Y
Vi�2Wi

WiVi+2

 =
Y

Vi�2Vi�1Vi

ViVi+1Vi+2

 �
Y

Vi+1Vi�2Vi+2

Vi+2Vi�1Vi�2

 :

The first term on the right has the value 1 (substitutei! i+2 in the numerator) and
the second term on the right has the value 1 ifn = 5 or 7 (make the substitutions
i! i+ 1 or i! i+ 4 in the numerators, respectively).

Finally, for the third sporadic case 8(2; 1, 5)

Y
Vi�2Wi

WiVi+2

 =
Y

Vi�2ZiVi

Vi+2ViZi



by APB applied to triangles with bases[ViZi] and apexesVi�2 = Vi+6; Vi+2 (see
Figure 16). Now

Y
Vi�2ZiVi

Vi+2ViZi

 =
Y

ViZi+2Vi+2

Vi+2ViZi

 =
Y

ViZiVi+2

ViZiVi+2

 = 1;

where the first equality rises from the substitutioni ! i + 2 in the numerator,
and the second by rearrangement and noticing thatZi = Zi+2. This completes the
proof of Theorem 1.

THEOREM 2. The second transversality propertyn(m; r; s; t; u) is true in at least
the following cases:

(i) n(m; 0; a; 0;2a) wherem+ 3a � 0,
(ii) n(m; 0; a; a;�a) wherem+ 3a � 0,
(iii) n(m; 0; a; a;2a) where2m+ 3a � 0,
(iv) n(m; 0;m; b;m+ b) where2m+ 3b � 0,
(v) n(m; 0;�2m; b; b� 2m) wherem � 3b,
(vi) 7(1; 0, 1; 1, 4), 7(1; 0,�2; �2, 2), 8(1; 0,�2; �2, 3), 10(1; 0,�2; �2, 4),

11(1; 0, 1; 1, 6),

where all the congruences are modulon.

Hence there are five general cases, (i) – (v) and five sporadic cases listed in
(vi). Additional cases arise ifn is divisible by 2 (Theorem 3), by 4 (Theorem 4) or
if n = 16 (Theorem 5). The same remarks about checking cases, made after the
statement of Theorem 1, apply here also.

The theorem is true for alln > 4 whenever the statements are meaningful, but
for small values of n(n < 10) a number of anomalous cases arise. For example,
whenn = 4, case 2(i) withm = 1; a = 1 is the same as case 2(ii) with the same
values ofm anda. Whenn = 5, case 2(ii) withm = 1; a = 3 reduces to the
first transversality result since, for alli, the intersection pointYi coincides with
the vertexVi+3. Forn = 6, in case 2(iv) withm = 3; b = �2, the pointZi (and
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Figure 17. Theorem 2(i).

Figure 18. Theorem 2(ii), (iii) and (vi).

therefore the transversalYiZi) is not defined. Forn > 10 each of the first five parts
of the theorem leads to at least one non-trivial assertion. Full details can be found
in the table at the end of the paper.

Proof. (i) The congruencem + 3a � 0 implies thatVi; Vi�a, Vi�2a; Vi+m =

Vi�3a are the vertices of a complete quadrangleQ whose diagonal points areYi,
Zi andXi (see Figure 17). Hence






ViWi

WiVi+m




 =






ViXi

Vi+mXi




 =






ViVi�aVi�b

Vi+mVi�aVi�b





;

where the first equality follows by the harmonic properties ofQ, and the second by
APB applied to triangles with bases[Vi�a; Vi�2a] and apexesVi; Vi+m. Hence,
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Y
ViWi

WiVi+m

 =
Y

ViVi�aVi�2a

Vi�3aVi�aVi�2a

 = 1;

where the second equality follows from the substitutioni! i�a in the numerator.
(ii), (iii) and(vi). Considern(m; 0; a; a; b) (see Figure 18). By APB for trian-

gles with bases[Yi; Zi] and apexesVi; Vi+m:


ViWi

WiVi+m

 = �


ViZiYi

Vi+mZiYi



= �


ViVi�aYi

Vi+mVi+m+aYi

 �

Vi+mVi+m+aVi

Vi�aViVi+m

 ; (6)

where the second equality follows from the Elimination Lemma withd = i; e =

i� a, f = i+m; g = i+m+ a;A = Zi,B = C = Yi. Again by the Elimination
Lemma withd = i� a; e = i� b; f = i+m+ a, g = i+m+ b;A = Yi,B = Vi
andC = Vi+m,


Vi�aYiVi

Vi+m+aYiVi+m

 =


Vi�aVi�bVi

Vi+m+aVi+m+bVi+m

 �

Vi+m+aVi+m+bVi�a

Vi�bVi�aVi+m+a

 :

Substituting this expression for the first factor of the last term in (6) yields


ViWi

WiVi+m

 = �


Vi+mVi+m+aVi

Vi�aViVi+m

 �


Vi�aVi�bVi

Vi+m+aVi+m+bVi+m

 �

�


Vi+m+bVi+m+aVi�a

Vi�aVi�bVi+m+a



which, upon taking products and rearranging leads to

Y
ViWi

WiVi+m

 =
Y

ViVi+mVi+m+a

Vi�aVi�bV Vi+m+a

 �
Y

Vi+m+bVi+m+aVi�a

ViVi+mVi�a

 �

�

Y
Vi�aVi�bVi

Vi+m+bVi+m+aVi+m

 : (7)

For (ii) we substituteb � �a andm � �3a leading to

Y
ViWi

WiVi+m

 =
Y

ViVi�3aVi�2a

Vi�aVi+aVi�2a

 �
Y

Vi�4aVi�2aVi�a

ViVi�3aVi�a

 �

�

Y
Vi�aVi+aVi

Vi�4aVi�2aVi�3a

 :

geom1556.tex; 1/06/1998; 11:27; v.7; p.17
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Each term on the right takes the value 1 as can be seen by making the substitutions
i ! i + a; i ! i + a; i ! i � 3a respectively in the numerators of the three
fractions. This establishes (ii).

For (iii) we substituteb � 2a in (7). This yields
Y

ViWi

WiVi+m

 =

Y
ViVi+mVi+m+a

Vi�aVi�2aVi+m+a

 �
Y

Vi+m+2aVi+m+aVi�a

ViVi+mVi�a

 �

�

Y
Vi�aVi�2aVi

Vi+m+2aVi+m+aVi+m

 :

Each term on the right takes the value 1 as can be seen by making the substitutions
i! i+m+ a; i! i+m+ a, i! i+m+ 2a respectively in the numerators of
the three fractions and using 2m+ 3a � 0. This establishes (iii).

(vi) The five sporadic cases follow by another rearrangement of (7), namely
Y

ViWi

WiVi+m

 =

Y
ViVi+mVi+m+a

ViVi+mVi�a

 �
Y

Vi�aVi�bVi

Vi+m+bVi+m+aVi+m

 �

�

Y
Vi+m+bVi+m+aVi�a

Vi�aVi�bVi+m+a

 :

Substituting the values ofn;m; a; b for each of the five sporadic cases makes each
of the three product terms in this expression equal to 1. We leave details to the
reader. It will be observed that in showing that each term has the value 1 it is
necessary to make use of the given value ofn. This is precisely why these cases
are sporadic – in the regular cases, the value ofn is essentially irrelevant. A similar
remark applies to the sporadic cases in part (ii) of Theorem 1.

(iv) and(v). Considern(m; 0; a; b; a + b) (see Figure 19).


ViWi

WiVi+m

 = �


ViZiYi

Vi+mZiYi



by APB applied to triangles with bases[Yi; Zi] and apexesVi; Vi+m. Now


ViZiYi

Vi+mZiYi

 =


ViVi�aYi

Vi+mVi+m+aYi

 �

Vi+mVi+m+aVi

Vi�aViVi+m



by the Elimination Lemma withd = i; e = i�a; f = i+m,g = i+m+a;A = Zi,
B = C = Yi. Hence

Y
ViWi

WiVi+m

 =
Y

ViVi�aYi

Vi+m+aVi+mYi

 �
Y

ViVi+mVi+m+a

ViVi+mVi�a

 ;

or, upon making the substitutioni ! i �m � a in the denominator of the first
term,

Y
ViWi

WiVi+m

 =
Y

ViVi�aYi

ViVi�aYi�m�a

 �
Y

ViVi+mVi+m+a

ViVi+mVi�a

 : (8)
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Figure 19. Theorem 2(iv) and (v).

BothYi+b andYi�m�b�a lie on the lineViVi�a, so, trivially,

1=





ViVi�a

Yi�m�b�aYi+b




 �






Yi�m�b�aYi+b

ViVi�a






and by two applications of APH to triangles with apexesYi andYi�m�a,

1=





ViVi�aYi

Yi�m�b�aYi+bYi




 �






Yi�m�b�aYi+bYi�m�a

ViVi�aYi�m�a




 :

Taking products and interchanging denominators we obtain

1=
Y

ViVi�aYi

ViVi�aYi�m�a

 �
Y

Yi�m�b�aYi+bYi�m�a

Yi�m�b�aYi+bYi

 : (9)

Divide (9) into (8) to eliminate the first product on the right side of each, and so
obtain
Y

ViWi

WiVi+m

 =
Y

ViVi+mVi+m+a

ViVi+mVi�a

 �
Y

Yi�m�b�aYi+bYi

Yi�m�b�aYi+bYi�m�a

 : (10)

For (iv) substitutea � m, then clearly the first factor has the value 1 as one can
see from the substitutioni! i�m in the numerator. If 2m+ 3b � 0, the second
factor becomes

Y
Yi+2bYi+bYi

Yi+2bYi+bYi+3b

 ; (11)
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which has the value 1 as one can see from the substitutioni ! i + b in the
numerator.

For (v) we substitutea � �2m, then the first factor in (10) has the value 1 as
one can see from the substitutioni! i +m in the numerator. If alsom � 3b the
second factor is the same as (11) and so takes the value 1 as before. This proves
(v) and completes the proof of the theorem.

It is worth remarking that whereas our theorem only statessufficientconditions
on the parameters for the property to be true, in a case like that just considered,
necessityis also easy to prove. The first factor on the right side of (10) takes the value
1 only if m � a or a+ 2m � 0 or 2a+m � 0 and this last congruence is clearly
impossible for then the pointsZi coincide with the vertices of the quadrangle. The
second factor takes the value 1 only ifm + a � 0, or 2m + 3b + 2a � 0, or
m + 3b + a � 0. Combinations of these congruences are either inadmissible, or
lead to the conditions given in the theorem. Ifm � a then either 2m � 2a � 0
which is impossible, or 2m + 3b � 0 or 4m + 3b � 0, both of which lead to
Theorem 2(iv). If, on the other hand,a + 2m � 0 then eitherm � 0 which is
impossible, or 3b � m, or 3b � 2m, both of which lead to Theorem 2(v).

We now consider the case wheren is even andn = 2m.

THEOREM 3. If n = 2m, then the second transversality property is true in at
least the following cases:

(i) 2m(m; a; b;�a;�b),
(ii) 2m(m; a;�a; b;�b),
(iii) 2m(m; a;�a; b; b+m), and
(iv) 2m(m; a; a+m; b; b+m).

Herea andb may take any values subject to the condition that all points, lines
and fractions are well-defined.

As with Theorem 2, this theorem is true for alln > 4 whenever the assertions
are meaningful. Forn = 4 there are no cases, and forn = 6;8 only cases 3(i) and
3(iii) lead to non-trivial assertions. Forn > 10 all four parts of the theorem yield
results; these are listed in the table at the end of the paper.

Proof.Since, in (i),

Zi = Vi�aVi�b \ Vi+m+aVi+m+b

and

Yi = Vi+aVi+b \ Vi+m�aVi+m�b
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Figure 20. Theorem 3(i).

Figure 21. Theorem 3(ii), (iii) and (iv).

it follows thatYi andZi are interchanged by the substitutioni! i+m, see Figure
20. In (ii), (iii) and (iv) if r = a ands = �a, then

Zi = Vi�aVi+a \ Vi+m+aVi+m�a;

and if r = a; s = a+m, then

Zi = Vi�aVi�a�m \ Vi+m+aVi+a;

and so, in either cases, the substitutioni! i+m leavesZi invariant (see Figure 21).
Exactly the same argument applies toYi (with b substituted fora). Hence in all
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four cases, both the lineYiZi and the chordViVi+m are left invariant under this
substitution and thereforeWi =Wi+m. Consequently






ViWi

WiVi+m




 �






Vi+mWi+m

Wi+mVi




 =






ViWi

WiVi+m




 �






Vi+mWi

WiVi




 = 1: (12)

Now

Y
ViWi

WiVi+m



is the product ofm pairs of factors like those on the left side of (12) and so this
product has the value 1. This completes the proof of Theorem 3.

Examples of this type are easily constructed sincea andb may take any values
subject to the non-triviality conditions. Hence whenn = 2m is large, there are
very many examples of this type.

We consider the case in whichn is divisible by 4 andn = 4m.

THEOREM 4. If n = 4m, the second transversality property is true in at least the
following cases:

(i) 4m(m; a;2m+ a;�a;2m� a),
(ii) 4m(m; 0; m; a; a+ 2m), and
(iii) 4m(m; 0; m; a; m� a).

Here a can take any value subject to the non-triviality conditions.

The theorem leads to non-trivial assertions only ifn > 12.

Proof (i). Since

Zi = Vi�aVi�2m�a \ Vi+m+aVi�m+a

and

Yi = Vi+aVi�2m+a \ Vi+m�aVi+3m�a;

(see Figure 22) it follows that the substitutioni ! i + rm(r = 0;1;2;3) leaves
the lineYiZi invariant. NowYiZi cuts the sides of the quadrangleQ = [Vi; Vi+m,
Vi+2m, Vi+3m] in Wi, Wi+m, Wi+2m, Wi+3m respectively (see Figure 23). Hence
by Menelaus’ Theorem applied toQ and the transversalYiZi,


ViWi

WiVi+m

 �

Vi+mWi+m

Wi+mVi+2m

 �

Vi+2mWi+2m

Wi+2mVi+3m

 �

Vi+3mWi+3m

Wi+3mVi

 � 1: (13)
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Figure 22. Theorem 4(i).

Figure 23. Theorem 4(i).

But

Y
ViWi

WiVi+m



is the product ofm sets of four factors as on the left side of (13) and so has the
value 1. This proves (i).

(ii) and (iii). Here, sinceZi = ViVi�m\ Vi+mVi+2m, it follows thatZi =
Zi+2m andZi+m = Zi+3m are two of the diagonal points of the quadrangleQ
(see Figure 24). SinceYi = Vi�aVi�a�2m \ Vi+m+aVi+3m+a in (ii), and Yi =
Vi�aVi�m+a \Vi+m+aVi+2m�a in (iii), it follows that Yi = Yi+2m andYi+m =

Yi+3m. Hence the lineYiZi meets the sidesViVi+m andVi+2mVi+3m of Q in Wi

andWi+2m respectively. SimilarlyZi+mYi+m meets the sidesVi+mVi+2m and
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Figure 24. Theorem 4(ii) and (iii).

Vi+3mVi in Wi+m andWi+3m respectively. Applying Menelaus’ Theorem toQ
with transversalYiZi we obtain






ViWi

WiVi+m




 �






Vi+mZi

ZiVi+2m




 �






Vi+2mWi+2m

Wi+2mVi+3m




 �






Vi+3mZi

ZiVi




 = 1: (14)

Now Zi, Vi, Wi+3m, Vi+3m are in perspective fromZi+m with Zi, Vi+m, Wi+m,
andVi+2m respectively, and so, by the invariance of the cross ratio,






Vi+mWi+m

Wi+mVi+2m






� Vi+mZiZiVi+2m

 =
 ViWi+3m

Wi+3mVi+3m


� ViZi

ZiVi+3m

 = �(say):

Hence Vi+mZiZiVi+2m

 = 1
�

 Vi+mWi+m

Wi+mVi+2m

 and
Vi�mZiZiVi

 = �

Vi+3mWi+3m

Wi+3mVi

 :
Substituting in (14) we obtain

 ViWi

WiVi+m

 �

 Vi+mWi+m

Wi+mVi+2m

 �

Vi+2mWi+2m

Wi+2mVi+3m

 �

Vi+3mWi+3m

Wi+3mVi

 = 1: (15)
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Figure 25. Theorem 5.

But
Y

ViWi

WiVi+m



is the product ofm sets of four factors as on the left side of (15), and so takes the
value 1. This completes the proof of Theorem 4.

Finally we come to the one (sporadic) case of the second transversality property
that is not covered by Theorems 2, 3 and 4.

THEOREM 5. The second transversality property is true in the case

16(2; 0;2; 1;9):

Proof.(see Figure 25). By APB for triangles with baseYiZi,

ViWi

WiVi+2

 = �

ViZiYi

Vi+2ZiYi

 = �

ViVi�2Yi

Vi+2Vi+4Yi

 �

Vi+2Vi+4Vi

Vi�2ViVi+2

 ;

where the second equality follows from the elimination lemma withd = i; e = i�2,
f = i+ 2, g = i+ 4,A = Zi andB = C = Yi. Taking products and rearranging

Y
ViWi

WiVi+2

 =
Y

ViVi�2Yi

Vi+4Vi+2Yi

 �

ViVi+2Vi+4

Vi�2ViVi+2

 :
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Now the second factor is clearly 1 (substitutei! i� 2 in the numerator). The
first factor can be written






ViVi�2Yi

Vi+4Vi+2Yi+4






sinceYi = Yi+4. The value of this product is 1 (substitutei ! i + 2 in the
numerator). Hence

Y
ViWi

WiVi+2

 = 1;

and Theorem 5 is proved.

5. Remarks and Comments

As remarked earlier, the completeness of our results has been checked empirically
for allnup to 20, and for some larger values. However, the fact that the running time
of the program is proportional to the sixth power ofn, makes exhaustive checking
for large values ofn a practical impossibility with the computing facilities at our
disposal. And this is true even with simplifications such as the following: we can
delete all cases in which HCF(n;m) = d andm > d for these are repetitions of
cases for whichm = d.

In a few cases we have been able to back up our assertion that our enumeration
is complete by theoretical considerations. For example, we have shown that the
conditions in parts (iv) and (v) of Theorem 2 are necessary as well as sufficient,
and there seems no way to extend the argumentation of Theorem 5 to values of n
greater than 16.

The number of essentially distinct primitive cases of the second transversality
property varies erratically withn. Apart from the sporadic cases which occur for
n = 7 and 11, there are only five cases whenn > 7 is prime, namely one given
by each of the parts (i) to (v) of Theorem 2. But the number of cases can be quite
large if n is divisible by 4 or has several small factors. For example there are 72
cases whenn = 18, and 61 whenn = 20.

It is difficult to see any underlying pattern to our results. For example, see
Figure 3. Heren = 11,Zi = ViVi+10\ Vi+1Vi+2, Yi = Vi+4Vi+5 \ Vi+7Vi+8 and
Wi = ViVi+1 \ YiZi. We know, by Theorem 2(iv) that the Second Transversal
Theorem implies that (1) holds in this case; but it is hard to see, on general
principles, why a similar result doesnot hold if, for example, we defineYi =

Vi+3Vi+4 \ Vi+8Vi+9 or Yi = Vi+3Vi+5 \ Vi+7Vi+9, etc., instead of the above. In
other words, a general explanation of the transversality phenomena, at least in the
case of the Second Transversality Theorem, is still missing.

There probably exist many more configurations involving polygons in the affine
plane in which a relation similar to (1) holds. We finish by giving one example
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Figure 26. Another configuration in which�[ViW�i=WiVi+1] = 1. HereViVi+1 is parallel
toWi+4Wi+1.

(see Figure 26). Here the pentagram P =[V0; V1, V2, V3; V4] is circumscribed to the
pentagonQ = [W0;W3, W1;W4, W2] in such a way thatViVi+1 passes through
Wi and is parallel toWi+4Wi+1. Then

Y�
ViWi

WiVi+1

�
= 1

as is easily proved using APH. Analogous properties hold for alln-gons withn
odd andn > 5.

Finally we remark that by choosing a suitable line as the ‘line at infinity’ and
using cross-ratios instead of ratios of lengths, all the theorems of this paper can
be converted into theorems in projective geometry. In many ways, however, the
presentation in affine geometry which we have chosen seems simpler and intuitively
more attractive.
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Table I. The Second Transversality Property forn-gons with 46 n 6 16.

The number after each symbol indicates the relevant theorem;
thus 2(iii) indicates that the property is established in part (iii) of
Theorem 2.

n = 4
4(1; 0, 1; 0, 2) 2(i)

n = 5
5(1; 0,�2; 0,�4)a 2(i)

n = 6
6(3; 0, 1; 0, 2) 2(i) 6(3; 0, 1; 1,�1) 2(ii)
6(3; 0, 2; 2, 4) 2(iii) 6(3; 0, 1; 0,�1) 3(i)
6(3; 0, 2; 0,�2) 3(i) 6(3; 1,�1;�1, 2) 3(iii)

n = 7
7(1; 0, 2; 0, 4)a 2(i) 7(1; 0, 2; 2,�2) 2(ii)
7(1; 0, 4; 4, 1) 2(iii) 7(1; 0, 1; 4, 5) 2(iv)
7(1; 0, 1; 1, 4) 2(vi) 7(1; 0,�2;�2, 2) 2(vi)

n = 8
8(1; 0;�3; 0;�6) 2(i) 8(1; 0;�3;�3; 3) 2(ii)
8(1; 0, 2; 2, 4) 2(iii) 8(1; 0, 1; 2, 3)a 2(iv)
8(1; 0,�2; 3, 1) 2(v) 8(1; 0;�2;�2; 3) 2(vi)
8(4; 0, 1; 0,�1) 3(i) 8(4; 0, 3; 0,�3) 3(i)
8(4; 1,�1;�1, 3) 3(iii)

n = 9
9(3; 0,�1; 0,�2) 2(i) 9(3; 0; 2; 0; 4) 2(i)
9(3; 0,�4; 0,�8) 2(i) 9(3; 0,�1;�1, 1)a 2(ii)
9(3; 0, 2; 2,�2) 2(ii) 9(3; 0,�4;�4, 4) 2(ii)
9(3; 0, 1; 1, 2) 2(iii) 9(3; 0, 4; 4, 8) 2(iii)
9(3; 0,�2;�2,�4) 2(iii)

n = 10
10(1; 0, 3; 0, 6) 2(i) 10(1; 0; 3; 3;�3) 2(ii)
10(1; 0,�4;�4,�8) 2(iii) 10(1; 0, 1; 2, 3) 2(iv)
10(1; 0,�2; 7, 5) 2(v) 10(1; 0;�2;�2; 4) 2(vi)
10(5; 0, 1; 0,�1) 3(i) 10(5; 0; 2; 0;�2) 3(i)
10(5; 0, 3; 0,�3) 3(i) 10(5; 0; 4; 0;�4) 3(i)
10(5; 1, 2;�1,�2) 3(i) 10(5; 1,�2;�1, 2) 3(i)
10(5; 1, 3;�1,�3) 3(i) 10(5; 1;�3;�1; 3) 3(i)
10(5; 1,�1; 2,�2) 3(ii) 10(5; 1;�1;�1; 4) 3(iii)
10(5; 1,�1;�2, 3) 3(iii) 10(5; 2;�2;�1; 4) 3(iii)
10(5; 2,�2;�2, 3) 3(iii) 10(5;�1; 4;�2; 3) 3(iv)

n = 11
11(1; 0,�4; 0,�8) 2(i) 11(1; 0;�4;�4; 4) 2(ii)
11(1; 0, 3; 3, 6) 2(iii) 11(1; 0, 1; 3, 4)a 2(iv)
11(1; 0,�2; 4, 2) 2(v) 11(1; 0, 1; 1, 6) 2(vi)
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Table Icontd.

n = 12
12(3; 0;�1; 0;�2) 2(i) 12(3; 0;�5; 0;�10) 2(i)
12(3; 0,�1;�1, 1) 2(ii) 12(3; 0;�5;�5; 5) 2(ii)
12(3; 0, 2; 2, 4) 2(iii) 12(3; 0;�2;�2;�4) 2(iii)
12(3; 0, 3; 2, 5) 2(iv) 12(3; 0, 3;�2, 1) 2(iv)
12(3; 0,�6; 1,�5) 2(v) 12(3; 0;�6; 5;�1) 2(v)
12(6; 0, 1; 0,�1) 3(i) 12(6; 0, 5; 0,�5) 3(i)
12(6; 1, 2;�1;�2) 3(i) 12(6; 1;�2;�1; 2) 3(i)
12(6; 1, 4;�1;�4) 3(i) 12(6;�1; 4; 1;�4) 3(i)
12(6; 1,�1; 2,�2) 3(ii) 12(6; 1,�1;�1, 5) 3(iii)
12(6; 1,�1;�2, 4) 3(iii) 12(6; 2;�2;�1; 5) 3(iii)
12(6;�1, 5;�2, 4) 3(iv) 12(3; 1; 7;�1; 5) 4(i)
12(3; 0, 3;�1, 5) 4(ii) 12(3; 0, 3; 1, 7) 4(ii)
12(3; 0, 3; 1, 2) 4(iii) 12(3; 0, 3;�1, 4) 4(iii)

n = 13
13(1; 0, 4; 0, 8) 2(i) 13(1; 0, 4; 4,�4) 2(ii)
13(1; 0,�5;�5;�10) 2(iii) 13(1; 0, 1; 8, 9) 2(iv)
13(1; 0,�2; 9, 7) 2(v)

n = 14
14(1; 0,�5; 0,�10) 2(i) 14(1; 0,�5;�5, 5) 2(ii)
14(1; 0, 4; 4, 8) 2(iii) 14(1; 0, 1; 4, 5) 2(iv)
14(1; 0,�2; 5, 3) 2(v) 14(7; 0, 1; 0,�1) 3(i)
14(7; 0, 2; 0,�2) 3(i) 14(7; 0, 3; 0,�3) 3(i)
14(7; 0, 4; 0,�4) 3(i) 14(7; 0, 5; 0,�5) 3(i)
14(7; 0, 6; 0,�6) 3(i) 14(7; 1, 2;�1,�2) 3(i)
14(7; 1,�2;�1, 2) 3(i) 14(7; 1, 3;�1,�3) 3(i)
14(7; 1,�3;�1; 3) 3(i) 14(7; 1, 4;�1,�4) 3(i)
14(7; 1,�4;�1, 4) 3(i) 14(7; 1, 5;�1,�5) 3(i)
14(7; 1,�5;�1, 5) 3(i) 14(7; 2, 3;�2,�3) 3(i)
14(7; 2,�3;�2, 3) 3(i) 14(7; 2, 4;�2,�4) 3(i)
14(7; 2,�4;�2, 4) 3(i) 14(7; 1,�1; 2,�2) 3(ii)
14(7; 1,�1; 3,�3) 3(ii) 14(7; 2,�2; 3,�3) 3(ii)
14(7; 1,�1;�1, 6) 3(iii) 14(7; 1,�1;�2, 5) 3(iii)
14(7; 1,�1;�3, 4) 3(iii) 14(7; 2;�2;�1; 6) 3(iii)
14(7; 2,�2;�2, 5) 3(iii) 14(7; 2;�2;�3; 4) 3(iii)
14(7; 3,�3;�1, 6) 3(iii) 14(7; 3;�3;�2; 5) 3(iii)
14(7; 3,�3;�3, 4) 3(iii) 14(7;�1; 6;�2; 5) 3(iv)
14(7;�1, 6;�3, 4) 3(iv) 14(7;�2; 5;�3; 4) 3(iv)

n = 15
15(3; 0,�1; 0,�2) 2(i) 15(3; 0, 4; 0, 8) 2(i)
15(3; 0,�1;�1, 1) 2(ii) 15(3; 0, 4; 0,�4) 2(ii)
15(3; 0,�2;�2,�4) 2(iii) 15(3; 0,�7;�7,�14) 2(iii)
15(3; 0, 3;�2, 1) 2(iv) 15(3; 0, 3; 8, 11) 2(iv)
15(3; 0,�6; 1,�5) 2(v) 15(3; 0,�6; 11, 5) 2(v)
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Table Icontd.

n = 16
16(1; 0, 5; 0, 10) 2(i) 16(1; 0�11;�11, 11) 2(ii)
16(1; 0,�6;�6,�12) 2(iii) 16(1; 0, 1; 10, 11) 2(iv)
16(1; 0,�2; 6, 4) 2(v) 16(8; 0, 1; 0,�1) 3(i)
16(8; 0, 3; 0,�3) 3(i) 16(8; 0, 5; 0,�5) 3(i)
16(8; 0, 7; 0,�7) 3(i) 16(8;�1, 6; 1,�6) 3(i)
16(8; 1, 6;�1,�6) 3(i) 16(8; 1, 2;�1,�2) 3(i)
16(8; 1,�2;�1, 2) 3(i) 16(8; 1, 3;�1,�3) 3(i)
16(8; 1,�3;�1, 3) 3(i) 16(8; 1, 5;�1,�5) 3(i)
16(8; 1,�5;�1, 5) 3(i) 16(8; 2, 3;�2,�3) 3(i)
16(8; 2,�3;�2, 3) 3(i) 16(8; 2, 5;�2,�5) 3(i)
16(8; 2,�5;�2, 5)a 3(i) 16(8; 1,�1; 2,�2) 3(ii)
16(8; 1,�1; 3,�3) 3(ii) 16(8; 2,�2; 3,�3) 3(ii)
16(8; 1,�1;�1, 7) 3(iii) 16(8; 1,�1;�2, 6) 3(iii)
16(8; 1,�1;�3, 5) 3(iii) 16(8; 2,�2;�1, 7) 3(iii)
16(8; 2,�2;�3, 5) 3(iii) 16(8; 3,�3;�2, 6) 3(iii)
16(8; 3,�3;�1, 7) 3(iii) 16(8; 3,�3;�3, 5) 3(iii)
16(8;�1, 7;�2, 6) 3(iv) 16(8;�1, 7;�3, 5) 3(iv)
16(8;�2, 6;�3, 5) 3(iv) 16(4; 1, 9;�1, 7) 4(i)
16(4; 0, 4;�1, 7) 4(ii) 16(4; 0, 4; 1, 9) 4(ii)
16(4; 0, 4; 1, 3) 4(iii) 16(4; 0, 4;�1, 5) 4(iii)
16(2; 0, 2; 1, 9) 5

aDiagrams illustrate these cases.
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