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ON THE NUMBER OF INVARIANT STRAIGHT LINES
FOR POLYNOMIAL DIFFERENTIAL SYSTEMS

Joan C. Artés, Branko Grünbaum and Jaume Llibre

If P and Q are two real polynomials in the real variables x
and y such that the degree of P 2 +Q2 is 2n, then we say that
the polynomial differential system x′ = P (x, y), y′ = Q(x, y)
has degree n. Let α(n) be the maximum number of invariant
straight lines possible in a polynomial differential systems of
degree n > 1 having finitely many invariant straight lines. In
the 1980’s the following conjecture circulated among math-
ematicians working in polynomial differential systems. Con-
jecture: α(n) is 2n+ 1 if n is even, and α(n) is 2n+ 2 if n is odd.
The conjecture was established for n = 2, 3, 4. In this paper
we prove that, in general, the conjecture is not true for n > 4.
Specifically, we prove that α(5) = 14. Moreover, we present
counterexamples to the conjecture for n ∈ {6, 7, . . . , 20}. We
also show that 2n + 1 ≤ α(n) ≤ 3n − 1 if n is even, and that
2n+ 2 ≤ α(n) ≤ 3n− 1 if n is odd.

1. Introduction and statement of the main results.

Let P and Q be two real polynomials in the real variables x and y. We say
that the polynomial differential system

(1) x′ = P (x, y) , y′ = Q(x, y),

has degree n if the degree of the polynomial P 2 +Q2 is 2n.
Studies of polynomial differential systems were carried out by Poincaré

in [P1], [P2] and [P3]. The algebraic feature of polynomial differential
systems renders natural certain questions and problems of an algebraic or an
algebro–geometric nature, such as to recognize when system (1) has invariant
algebraic curves, or is algebraically integrable. See the interesting survey of
Schlomiuk [Sc] on these questions. This paper deals with the former aspect.

The straight line ax + by + c = 0 is invariant for the flow of system
(1), and we call it an invariant straight line of system (1) if ax′ + by′ =
aP (x, y) + bQ(x, y) = (ax+ by + c)R(x, y) for some real polynomial R.

Suppose that the polynomial differential system (1) of degree n has finitely
many invariant straight lines; then we denote by α(n, P,Q) the number
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of invariant straight lines of (1). We define α(n) as the maximum of the
α(n, P,Q) when P and Q vary. In the mid-1980’s Ye Yanqian told us the
following conjecture, circulating among mathematicians working in polyno-
mial differential equations:

Invariant Straight Line Conjecture.

α(n) =

{
2n+ 1 for even n,

2n+ 2 for odd n.

It is well known that the conjecture is true for n = 2. Recently Zhang
Xikang [Zh] and J. Sokulski [Sk] proved it for n equal to 3 and 4. Here we
will give shorter proofs of the conjecture for n = 2, 3 (see Corollary 5).

The following proposition shows that the bounds in this conjecture could
not be decreased; this is formalized in Corollary 2.

Proposition 1. System (1) with

P (x, y) =
n∏
i=1

(x− i), Q(x, y) =
n∏
i=1

(y − i),

for n > 1 has exactly 2n + 1 (respectively 2n + 2) invariant straight lines if
n is even (respectively odd).

Corollary 2. If n > 1 then

α(n) ≥
{

2n+ 1 for even n,

2n+ 2 for odd n.

The next proposition shows what occurs with the number of invariant
straight lines for polynomial differential systems of degree 0 and 1.

Proposition 3. For the polynomial differential system (1) of degree n the
following statements hold.
(a) If n = 0 then (1) has infinitely many invariant straight lines.
(b) If n = 1 then (1) has either infinitely many invariant straight lines, or

at most 2 invariant straight lines.

The next result gives an upper bound of the number of invariant straight
lines which a polynomial differential system (1) of degree n having finitely
many invariant straight lines can have. This result was also obtained by
Zoladek [Zo].
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Proposition 4. If n ≥ 1 then α(n) ≤ 3n− 1.

The next result follows immediately from Corollary 2 and Proposition 4.

Corollary 5.
(a) If n is even, then 2n+ 1 ≤ α(n) ≤ 3n− 1.
(b) If n is odd, then 2n+ 2 ≤ α(n) ≤ 3n− 1.
(c) The Invariant Straight Line Conjecture is true for n = 2, 3; i.e. α(2) =

5 and α(3) = 8.

The following result shows some basic results on the invariant straight lines
of a polynomial differential system of degree n. For the definition of finite
and infinite singular points of a polynomial differential system see Section 4.

Proposition 6. Assume that the polynomial differential system (1) of
degree n has finitely many invariant straight lines. Then the following state-
ments hold for system (1).
(a) Either all the points on an invariant straight line are singular or the

line contains no more than n singular points.
(b) No more than n invariant straight lines can be parallel.
(c) The set of all invariant straight lines through a single point cannot

have more than n+ 1 different slopes.
(d) Either it has infinitely many finite singular points, or it has at most

n2 finite singular points.

Proposition 6 and the Invariant Straight Line Conjecture induced us to
consider the following purely geometric problem.

Given a natural number n > 1, let γ(n) denote the maximum number of
straight lines in the real plane satisfying:
(1) Each line in the family has at most n intersection points with the other

lines in the family,
(2) no more than n lines in the family can be parallel,
(3) the lines of the family passing through an intersection point cannot

have more than n+ 1 different slopes,
(4) the set of all intersection points among lines in the family has cardi-

nality at most n2.

Geometric Straight Line Question. Is it true that γ(n) is 2n + 1 (re-
spectively 2n+ 2) if n is even (respectively odd)?

Clearly if the Geometric Straight Line Question has a positive answer,
then the Invariant Straight Line Conjecture also holds. However, we will
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find examples that answer the Geometric Straight Line Question negatively
(see Section 5). These examples will be used to get counterexamples to the
Invariant Straight Line Conjecture. More concretely, we have the following
two main results.

Theorem 7. The maximum number of invariant straight lines for polyno-
mial differential systems of degree 5 having finitely many invariant straight
lines is 14; i.e. α(5) = 14.

Theorem 7 shows that the Invariant Straight Line Conjecture is not true
for polynomial differential systems of degree 5. Other counterexamples to
the Invariant Straight Line Conjecture are given in the following theorem.

Theorem 8. The following estimates hold.
(a) 15 ≤ α(6) ≤ 17.
(b) 18 ≤ α(7) ≤ 20.
(c) 19 ≤ α(8) ≤ 23.
(d) 24 ≤ α(9) ≤ 26.
(e) 25 ≤ α(10) ≤ 29.
(f) 30 ≤ α(11) ≤ 32.
(g) 31 ≤ α(12) ≤ 35.
(h) 32 ≤ α(13) ≤ 38.
(i) 33 ≤ α(14) ≤ 41.
(j) 36 ≤ α(15) ≤ 44.
(k) 37 ≤ α(16) ≤ 47.
(l) 38 ≤ α(17) ≤ 50.

(m) 39 ≤ α(18) ≤ 53.
(n) 42 ≤ α(19) ≤ 56.
(o) 43 ≤ α(20) ≤ 59.

Remark 9. Darboux in [Da] showed that if a polynomial differential
system of degree n has a number of invariant algebraic curves greater than
n(n+1)/2, then the system has a first integral. Proposition 4 and the result
of Zhang Xikang and Sokulski for n = 4 show that Darboux’s result does not
apply for n ≥ 4 if all the invariant algebraic curves are straight lines (except
if the polynomial differential system has infinitely many invariant straight
lines).
Remark 10. Suo and Sun in [SS] showed that if a polynomial differential
system of degree n has more than (n − 1)(n + 2)/2 invariant straight lines,
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then the system has no limit cycles. From Proposition 4 it follows that this
result does not apply for n ≥ 6, except if the polynomial differential system
has infinitely many invariant straight lines.

The paper is organized as follows. In Section 2 we prove Propositions 1
and 3. Proposition 4 is proved in Section 3. In Section 4 we summarize the
Poincaré compactification for a polynomial differential system, and we use it
for proving Proposition 6. Section 5 is dedicated to present some simplicial
arrangements of lines which provide examples giving a negative answer to
the Geometric Straight Line Question. Finally Theorems 7 and 8 are proved
in Section 6.

The authors want to express their gratitude to Professor Ye Yanqian for
his valuable comments on a preliminary version of this paper.

The first and third authors are partially supported by a DGICYT grant
number PB93-0860. The second author was supported in part by NSF Grant
DMS-9300657.

2. Preliminary results.

The goal of this section is to prove Propositions 1 and 3.

Proof of Proposition 1. Clearly the 2n straight lines x = i and y = i for
i = 1, 2, . . . , n are invariant for the flow of the system given in Proposition
1, and no other horizontal or vertical straight lines are invariant for such a
system. Therefore, if the system of Proposition 1 has more invariant straight
lines they must have the form y = ax+ b with a 6= 0, and they must satisfy

(y′ − ax′)|y=ax+b ≡ 0.

Therefore
n∏
i=1

(ax+ b− i)− a
n∏
i=1

(x− i) ≡ 0.

It is easy to see that this identity implies that a = 1 and b = 0 if n is even;
a = 1 and b = 0, or a = −1 and b = n + 1 if n is odd. This completes the
proof of Proposition 1.

Proof of Proposition 3. If n = 0 then statement (a) is immediate.
Suppose n = 1. If system (1) has no invariant straight lines we are done.

If it has at least one invariant straight line, doing a rotation, a translation
and a rescaling of the time (if necessary), we can assume that the invariant
straight line is x = 0 and that system (1) can be written in the form

(2) x′ = x , y′ = ax+ by + c.
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Since the unique invariant straight line of the form x = constant is x =
0, all the other invariant straight lines (if any exist) must be of the form
y = Ax + B. If y = Ax + B is an invariant straight line, then x(t) = Cet,
y(t) = ACet +B with C 6= 0 must satisfy system (2). Therefore we get

A(1− b) = a and bB = −c.
If b = 1 then a = 0 and system (2) has infinitely many invariant straight

lines of the form y = Ax− c with A ∈ R.
If b = 0 then c = 0 and system (2) has infinitely many invariant straight

lines of the form y = ax+B with B ∈ R.
Finally, if b /∈ {0, 1} then system (2) has exactly two invariant straight

lines, namely
x = 0 and y =

a

1− bx−
c

b
.

3. An upper bound for α(n).

In this section we prove Proposition 4.

Proof of Proposition 4. The (signed) curvature of a parametrized planar
curve (x(t), y(t)) at t is (x′y′′− y′x′′)(x′2 + y′2)3/2, where as usual the prime
denotes derivative with respect to t; for more details see [Ca]. If the cur-
vature in all the solutions of system (1) is zero then all solutions of (1) are
invariant straight lines. So, since for computing α(n) we must assume that
system (1) has finitely many invariant straight lines, the curvature cannot
be zero on all the solutions of system (1). Therefore, if γ(t) = (x(t), y(t))
denotes the solution of (1) through the origin, then doing a translation (if
necessary) we can assume that the curvature of γ(t) at the origin is different
from zero.

First we assume that system (1) has finitely many singular points. Doing
a rotation (if necessary), we can assume that all invariant straight lines
of system (1) satisfying the hypothesis of Proposition 4 are of the form
y = ax + b with a 6= 0, and that the system has no singular points on the
line x = 0.

If y = ax+ b is an invariant straight line of system (1), we have Q(x, ax+
b) = aP (x, ax + b) for all x ∈ R. In particular, for x = 0 we get Q(0, b) =
aP (0, b). Since system (1) has no singular points on the line x = 0, P (0, b) 6=
0, and consequently

(5) a =
Q(0, b)
P (0, b)

.
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Since y = ax + b is an invariant straight line of system (1) its signed
curvature is zero, therefore

P (x, ax+ b)[Qx(x, ax+ b)P (x, ax+ b) +Qy(x, ax+ b)Q(x, ax+ b)]−

Q(x, ax+ b)[Px(x, ax+ b)P (x, ax+ b) + Py(x, ax+ b)Q(x, ax+ b)] = 0,

for all x ∈ R. In particular, for x = 0 we get

P 2(0, b)Qx(0, b) + P (0, b)Q(0, b)[Qy(0, b)− Px(0, b)]−Q2(0, b)Py(0, b) = 0.

We remark that this expression is not zero for b = 0, otherwise the curvature
of γ(t) at the origin will be zero. So, if y = ax + b is an invariant straight
line, then b must be a root of a polynomial of degree at most 3n− 1. Hence,
since a is determined from (5) it follows that the number of invariant straight
lines of system (1) is at most 3n− 1.

Now we assume that system (1) has infinitely many singular points. There-
fore the polynomials P and Q have a common polynomial factor R of degree
m such that the points (x, y) of the plane satisfying R(x, y) = 0 are singular
points, and by Bezout Theorem in the complement of the algebraic curve
R(x, y) = 0 system (1) has at most (n − m)2 singular points. Hence the
system

x′ = P (x, y)/R(x, y) , y′ = Q(x, y)/R(x, y),

has finitely many singular points. Repeating the previous arguments we
get that this system has at most 3(n −m) − 1 invariant straight lines. So
system (1) has at most 3(n−m)− 1 +m < 3n− 1 invariant straight lines.
Consequently, the proposition is proved.

4. Poincaré compactification and basic results.

Let X = (P,Q) be the vector field associated to system (1) of degree n.
The Poincaré compactified vector field p(X) corresponding to X is a vector
field induced on the two–dimensional sphere S2 as follows. Let S2 = {y =
(y1, y2, y3) ∈ R3 : y2

1+y2
2+y2

3 = 1} (the Poincaré sphere) and TyS2 the tangent
space to S2 at point y. Consider the central projections f+ : T(0,0,1)S2 → S2

+ =
{y ∈ S2 : y3 > 0} and f− : T(0,0,1)S2 → S2

− = {y ∈ S2 : y3 < 0}. These maps
define two copies of X, one in the northern hemisphere and the other in the
southern hemisphere. Denote by X ′ the vector field defined on S2 except on
its equator S1 = {y ∈ S2 : y3 = 0} by Df+ ◦X and Df− ◦X. Clearly S1 is
identified to the infinity of R2. In order to extend X ′ to an analytic vector
field on S2 (including S1) it is necessary that X satisfies suitable hypotheses.
Since the degree of X is n, the Poincaré compactification p(X) of X is the
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only analytic extension of yn−1
3 X ′ to S2. For the flow of the compactified

vector field p(X), the equator S1 is invariant. On S2 \ S1 there are two
symmetric copies of X, and knowing the behavior of p(X) around S1, we
know the behavior of X at infinity. The projection of the closed northern
hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7→ (y1, y2) is called the Poincaré
disc.

As S2 is a differentiable manifold for computing the expression of p(X), we
can consider the following six local charts Ui = {y ∈ S2 : yi > 0}, and Vi =
{y ∈ S2 : yi < 0} where i = 1, 2, 3, and the diffeomorphisms Fi : Ui → R2 and
Gi : Vi → R2 which are the inverses of the central projections from the ver-
tical planes tangents at points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1),
(0, 0,−1) respectively. We denote by z = (z1, z2) the value of Fi(y) or Gi(y)
for any i = 1, 2, 3. So z represents different things according to the local
chart under consideration. In these coordinates and in the local charts Ui
and Vi for i = 1, 2, z2 = 0 denotes always the points of S1.

A singular point q of p(X) is called an infinite (respectively finite) singular
point of X if it is a singular point of p(X) in S1 (respectively S2 \ S1). The
infinite singular points of X are the points (z1, 0) satisfying

F (z1) = Qn(1, z1)− z1Pn(1, z1) = 0 if (z1, 0) ∈ U1,(6)

G(z1) = Pn(z1, 1)− z1Qn(z1, 1) = 0 if (z1, 0) ∈ U2,

where Pn and Qn are the homogeneous part of degree n of P and Q. For
more details on the Poincaré compactification, see, for instance [Go], [So]
and [ALGM].

The main goal of this section is to prove Proposition 6. That is, to obtain
basic results on the set of invariant straight lines of a polynomial differential
system of a given degree.

Proof of Proposition 6. Suppose that system (1) satisfies the hypothesis of
Proposition 6.

If system (1) has an invariant straight line, performing (if necessary) a ro-
tation and a translation in the plane (x, y), we can assume that the invariant
straight line has the equation x = 0. The singular points (0, y) of system (1)
on this invariant straight line must satisfy Q(0, y) = 0. So, if Q(0, y) ≡ 0
then x = 0 is formed by singular points, otherwise the polynomial Q(0, y)
of degree at most n has at most n different real roots. Therefore, statement
(a) is proved.

In order to show statement (b) we assume that system (1) has k invariant
parallel straight lines. After a rotation in the plane (x, y) (if necessary), the
k parallel straight lines have equation of the form x = ai for i = 1, 2, . . . , k.
Then, since x − ai = 0 is invariant, it follows that x − ai divides P (x, y).
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Since the degree of P is at most n, it follows that k ≤ n. Hence, statement
(b) is proved.

We will prove statement (c) in two steps. First we assume that F (z1) in (6)
is not identically zero. Performing a rotation (if necessary) we can assume
that system (1) has no invariant straight lines of the form x = constant.
Then, each invariant straight line provides two pairs of diametrically opposite
infinite singular points, and all these pairs are contained in the local charts
U1 and V1. Moreover, if (z1, 0) is the infinite singular point of the local chart
U1 associated to the invariant straight line y = ax + b, then a = z1. Since
the infinite singular point (z1, 0) of the local chart U1 must satisfy Equation
(6), and F (z1) is a polynomial of degree at most n + 1, it follows that the
set of all invariant straight lines of system (1) cannot have more than n+ 1
different slopes. Therefore, statement (c) follows.

If F (z1) ≡ 0 in (6) then we consider that a point belongs to m > n + 1
invariant straight lines. We move this point to the origin with a translation
and one invariant straight line to x = 0 with a rotation (if necessary). If we
consider now the vector field in the local chart U1, we will have a polynomial
differential system of degree n+ 1 with z2 = 0 being a common factor. If we
remove this factor, the system has degree n at most. The set of straight lines
crossing the origin now are m − 1 parallel lines of the form z1 =constant.
By statement (b) this set has at most n invariant straight lines and we get
a contradiction with the assumption m > n + 1. This completes the proof
of statement (c).

Statement (d) follows immediately from Bezout Theorem.

5. On the Geometric Straight Line Question.

By an arrangement of n lines A(n) we mean the cell complex determined
in the real projective plane by a finite family of n straight lines which do
not have a common point. We call an arrangement of lines A(n) simplicial
provided all the faces of A are simplices. For more details see [Gr], [CF]
and [Sp].

In [Gr] Grünbaum presented a catalogue of simplicial arrangements of
lines. The catalogue lists all the known isomorphism–types of simplicial
arrangements of straight lines in the real projective plane, and provides
illustrations of those types which cannot be easily described. From this
catalogue we can obtain the following examples that answer the Geometric
Straight Line Question in the negative sense. For those n’s that we have
several examples we only present one with the maximal number of straight
lines.

Figure 1 shows the simplicial arrangementA(15) of the following 14 straight



216 J.C. ARTÉS, B. GRÜNBAUM AND J. LLIBRE

lines in the affine real plane plus the line of infinity:

x = i,

x = i(2k − 1),

y = i,

y = i(2k − 1),

y = ix,

y = −kx+ i(1− k),

y = −1
k
x+ i

1− k
k

,

Figure 1. The simplicial arrangement A(15).
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where i ∈ {−1, 1} and k denotes the golden section, i.e. k = (
√

5−1)/2. This
arrangement shows that γ(5) ≥ 14, and hence provides a negative answer
to the Geometric Straight Line Question for n = 5. It corresponds to the
arrangement A∗1(15) in the notation of [Gr].

Figure 2. The simplicial arrangement A(20).

Figure 2 shows the simplicial arrangement A(20) of the following 19
straight lines in the affine real plane plus the line of infinity:

y = j,

y = 2ix+ l,

y =
2
3

(ix+m),
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where i,m ∈ {−1, 1}, j = −4,−2,−1, 0, 1, 2, 4 and l = −6,−2, 2, 6. This
arrangement shows that γ(8) ≥ 19 and provides a negative answer to the
Geometric Straight Line Question for n = 8. It corresponds to the arrange-
ment A∗5(20) in the notation of [Gr].

Figure 3 shows the simplicial arrangement A(25) of the following 24
straight lines in the affine real plane plus the line of infinity:

x = j,

y = j,

y = i(
√

2 + 1)x,

y = i(
√

2− 1)x,

y = ix+ l,

Figure 3. The simplicial arrangement A(25).
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where j = −(
√

2+1),−1, 0, 1,
√

2+1, i ∈ {−1, 1} and l = −(
√

2+2),−√2, 0,√
2,
√

2+2. This arrangement shows that γ(9) ≥ 24, and provides a negative
answer to the Geometric Straight Line Question for n = 9. It corresponds
to the arrangement A∗5(25) in the notation of [Gr].

Figure 4. The simplicial arrangement A(31).

Figure 4 shows the simplicial arrangement A(31) with 30 straight lines
in the affine real plane plus the line of infinity. The 30 straight lines are
obtained by rotating the following 6 straight lines:

x = 0,

y = 1,
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y = cos(2π/5),

y = cos(4π/5),

y =
cos(2π/5) + 1
2 cos(2π/5)

,

y = − cos(π/5)
cos(2π/5)

,

by angles of 2π/5, 4π/5, 6π/5 and 8π/5. This arrangement shows that
γ(11) ≥ 30 and provides a negative answer to the Geometric Straight Line
Question for n = 11. It corresponds to the arrangement A∗2(31) of page 96
in the notation of [Gr].

Figure 5. The simplicial arrangement A(37).

Figure 5 shows the simplicial arrangement A(37) with 36 straight lines
in the affine real plane plus the line of infinity. The 36 straight lines are
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obtained by rotating the following 12 straight lines:

x = 0,

x = i sin(π/12),

y = 0,

y = i sin(π/12),

y = ix,

y = ix+ j(cos(π/12)− sin(π/12)),

by angles of π/6 and π/3. Here i, j ∈ {−1, 1}. This arrangement shows
that γ(15) ≥ 36 and provides a negative answer to the Geometric Straight
Line Question for n = 15. It corresponds to the arrangement A∗2(37) in the
notation of [Gr].

Figure 6. The simplicial arrangement A(19).
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As far as we know only one new simplicial arrangement of lines has been
found after the publication of the catalogue of [Gr], which is not relevant
here because it does not provide a negative answer to the Geometric Straight
Line Question.

In [Gr] three infinite families of simplicial arrangements of lines are pre-
sented. But none of these arrangements provides a negative answer to the
Geometric Straight Line Question. Here we find a new infinite family of
arrangements of lines which leads to a negative answer to the Geometric
Straight Line Question for infinitely many n’s.

Figure 7. The simplicial arrangement A′(31).

The new family A(2n+ 5) with n = 6k + 1 and k = 1, 2, . . . is formed by
the line at infinity plus the following set of 2n+ 4 straight lines in the affine
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real plane:

x =
√

3
2
i,

y =
1√
3
x+ i,

y = − 1√
3
x+ i,

y =
j

2
,

y =
√

3x+ j,

y = −
√

3x+ j,

Figure 8. The simplicial arrangement A(43).
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where i = −(k + 1),−k, . . . ,−1, 0, 1, . . . , k, k + 1 and j = −(k − 1),−(k −
2), . . . ,−1, 0, 1, . . . , k − 2, k − 1. We remark that the cases n = 7, 13 (see
Figures 6 and 7, respectively) correspond to simplicial arrangements that
already appeared in the catalogue of [Gr] with the notation A∗1(19) and
A∗2(31) of page 105, respectively. The arrangements of lines of this family
for n = 19, 25, 31, . . . are not simplicial, see for instance the arrangement
with n = 19 in Figure 8. The arrangement A(2n+5) shows that γ(6k+1) ≥
12k + 7, and so provides a negative answer to the Geometric Straight Line
Question for n = 6k + 1 and k = 1, 2, . . . .

6. Counterexamples to the Invariant Straight Line Conjecture.

In this section we prove Theorems 7 and 8. We will need the following
auxiliary result.

Lemma 9. If there exists a polynomial differential system (1) of degree
n with k invariant straight lines, then there exists a polynomial differential
system of degree n+ 1 with k + 1 invariant straight lines.

Proof. Clearly the polynomial differential system

x′ = (ax+ by + c)P (x, y), y′ = (ax+ by + c)Q(x, y),

where a2 + b2 6= 0 and the straight line ax+ by + c = 0 is different from the
invariant straight lines of system (1), is of degree n+1 and has the k invariant
straight lines of system (1) plus the invariant straight line ax + by + c = 0
formed by singular points.

Now we compute the polynomial differential system of least degree which
has as invariant straight lines the straight lines in the affine real plane of
the arrangements of Figures 1 to 8. Thus if we want to find a polynomial
differential system which has as invariant straight lines the straight lines of
Figure 1, by Proposition 6 the degree of such a system must be at least 5.
Then, in order that such a polynomial differential system has the invariant
straight lines x = i, x = i(2k − 1), y = i and y = i(2k − 1) with i ∈ {−1, 1}
and k = (

√
5− 1)/2, clearly it must be of the form:

x′ = (x2 − 1)(x2 − (2k − 1)2)P1(x, y),

y′ = (y2 − 1)(y2 − (2k − 1)2)Q1(x, y),

where P1(x, y) and Q1(x, y) are arbitrary real polynomials of degree 1 in the
variables x and y. Now we must determine the 6 coefficients of P1 and Q1 in
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such a way that the above polynomial differential system has the following
6 invariant straight lines

y = ix, y = −kx+ i(1− k) and y = −1
k
x+ i

1− k
k

.

This is equivalent to solve a linear system in the coefficients of the poly-
nomials P1 and Q1. In order to solve this linear system and the ones for
the other cases we have used the program MATHEMATICA. In the easier
cases the program has been able to solve the global system. In the more
complicated ones we have needed to work interactively with the program
and solve the system by a sequence of steps. The linear system has a unique
solution depending on one parameter. This parameter can be omitted in the
polynomial differential system by a rescaling of the time variable. Hence the
polynomial differential system of degree 5 which has as invariant straight
lines those of Figure 1 is:

x′ = (x2 − 1)(x2 − (
√

5− 2)2)(x+
√

5y),

y′ = (y2 − 1)(y2 − (
√

5− 2)2)(
√

5x+ y).

Proof of Theorem 7. From Proposition 4 and since the above polynomial
differential system of degree 5 has 14 invariant straight lines, Theorem 7
follows.

Now we want to find a polynomial differential system of degree 7 which
has as invariant straight lines the straight lines of Figure 6. Working as in
the case of Figure 1, we find that such a polynomial differential system is:

x′ = 2x(x2 − 3)(4x2 − 3)(x2 + 21y2 − 12),

y′ = y(−216 + 378x2 + 378y2 − 315x4 − 189y4

+ 35x6 + 105x4y2 − 63x2y4 + 27y6).

In order to find a polynomial differential system of degree 8 which has as
invariant straight lines the straight lines of Figure 2, working as in the case
of Figure 1, we see that such a polynomial differential system is:

x′ = 80640− 11264x2 − 224000y2 − 89600x4 + 281344x2y2 + 101920y4

+ 21504x6 − 62720x4y2 − 15680x2y4 − 14000y6

− 1280x8 + 5376x6y2 − 5600x4y4 + 3920x2y6 + 315y8,

y′ = 4096xy(y2 − 1)(y2 − 4)(y2 − 16).
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Now we want to find a polynomial differential system of degree 9 which
has as invariant straight lines the straight lines of Figure 3. Working as in
the case of Figure 1, such a polynomial differential system is:

x′ =x(x2 − 1)(x2 − (
√

2 + 1)2)[4(3 + 2
√

2)

− 4(2 +
√

2)x2 − 12(2 +
√

2)y2 + x4 − 6x2y2 + 21y4] ,

y′ = y(y2 − 1)(y2 − (
√

2 + 1)2)[4(3 + 2
√

2)

− 12(2 +
√

2)x2 − 4(2 +
√

2)y2 + 21x4 − 6x2y2 + y4].

If we want to find a polynomial differential system of degree 11 which has
as invariant straight lines the straight lines of Figure 4. Working as in the
case of Figure 1 we find that the polynomial differential system of degree 11
is:

x′ = 8x[−8(123 + 55
√

5) + 220(47 + 21
√

5)(x2 + y2)

+ 660(29 + 13
√

5)(x2y − y3)− 1650(9 + 4
√

5)(x4 + 2x2y2 + y4)

− (11 + 5
√

5)(−2145x4y + 2970x2y3 + 363y5)

+ 825(7 + 3
√

5)(x6 + 3x4y2 + 3x2y4 + y6)

+ 330(2 +
√

5)(5x6y − 5x4y3 − 9x2y5 + y7)

− 55(3 +
√

5)(5x8 + 90x4y4 − 24x2y6 + 9y8)

+ 2(25x10 − 275x8y2 + 1650x6y4 − 990x4y6 + 165x2y8 + 33y10)]

y′ = (1−
√

5 + 4y)(3 +
√

5 + 2y)(−2−
√

5 + 2y)(1 +
√

5 + 4y)

[8(11 + 5
√

5)y + 40(7 + 3
√

5)y2 − 40(2 +
√

5)(11x2y − y3)

− 5(3 +
√

5)(33x4 + 22x2y2 + 5y4)

+ 2(165x6 − 165x4y2 + 55x2y4 + y6)].

Now we want to find a polynomial differential system of degree 13 which
has as invariant straight lines the straight lines of Figure 7. Working as in
the case of Figure 1, such a polynomial differential system is:

x′ = 2x(x2 − 3)(4x2 − 3)(4x2 − 27)(−324

+ 1011x2 + 1599y2 − 118x4 + 4888x2y2 − 4290y4

+ 3x6 − 195x4y2 − 2431x2y4 + 1287y6),

y′ = − y(4y2 − 1)(157464− 777114x2 − 147258y2

− 482625x4 + 1061424x2y2 − 44631y4

+ 389961x6 − 34749x4y2 − 329589x2y4 + 41553y6
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− 99099x8 + 28314x6y2 − 30888x4y4 + 48438x2y6 − 7533y8

+ 5005x10 + 9009x8y2 − 12870x6y4 + 7722x4y6

− 3159x2y8 + 405y10).

We want to remark that this polynomial differential system of degree 13
has “only” 30 invariant straight lines while from Lemma 9 we can produce
a polynomial differential system of degree 13 with 32 invariant straight lines
from a polynomial differential system of degree 11. The difference is that the
former has a finite number of singular points while the second has infinitely
many singular points.

If we want to find a polynomial differential system of degree 15 which has
as invariant straight lines the straight lines of Figure 5. Working as in the
case of Figure 1, we find that such a polynomial differential system is:

x′ =x(−
√

2 +
√

6− 4x)(−
√

2 +
√

6 + 4x)

[19− 11
√

3− 2((98− 57
√

3)x2 − 9(12− 7
√

3)y2)

+ 2((355− 209
√

3)x4 + 2(401− 237
√

3)x2y2 + 91(5− 3
√

3)y4)

− 4((263− 160
√

3)x6 − (923− 566
√

3)x4y2

− 13(85− 52
√

3)x2y4 − 143(3− 2
√

3)y6)

+ (551− 375
√

3)x8 + 4(695− 451
√

3)x6y2

+ 130(37− 29
√

3)x4y4 + 286(18− 10
√

3)x2y6

+ 1287(1−
√

3)y8 − 2((20− 31
√

3)x10

− 3(378− 163
√

3)x8y2 + 10(520− 167
√

3)x6y4

− 286(30− 11
√

3)x4y6 + 429(4−
√

3)x2y8 − 143(2− 3
√

3)y10)

− 4(3x12 + 192x10y2 − 1235x8y4 + 1144x6y6

+ 1287x4y8 − 1144x2y10 + 143y12)] ,

y′ = 4y(−
√

2 +
√

6− 4y)(−
√

2 +
√

6 + 4y)

[−19 + 11
√

3 + 2(9(12− 7
√

3)x2 + (98− 57
√

3)y2)

− 2(91(5− 3
√

3)x4 − 2(401− 237
√

3)x2y2 − (355− 209
√

3)y4)

+ 4(143(3− 2
√

3)x6 + (923− 566
√

3)x2y4

+ 13(85− 52
√

3)x4y2 + (263− 160
√

3)y6)

− 1287(1−
√

3)x8 − 572(9− 5
√

3)x6y2 − 130(37− 29
√

3)x4y4

− 4(695− 451
√

3)x2y6 − (551− 375
√

3)y8

+ 2(143(2− 3
√

3)x10 − 429(4−
√

3)x8y2 + 286(30− 11
√

3)x6y4
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− 130(40− 9
√

3)x4y6 + 3(378− 163
√

3)x2y8 + (20− 31
√

3)y10)

− 4(143x12 + 1144x10y2 − 1287x8y4 − 1144x6y6

+ 1235x4y8 − 192x2y10 + 3y12)].

Finally, we wish to find a polynomial differential system of degree 19 which
has as invariant straight lines the straight lines of Figure 8. Working as in
the case of Figure 1, such a polynomial differential system is:

x′ = 2x(4x2 − 3)(x2 − 3)(4x2 − 27)(x2 − 12)

[−476928 + 1831632x2 + 2736912y2

− 1236176x4 + 3156432x2y2 − 7845024y4

+ 101859x6 − 38019x4y2 − 3200607x2y4 + 5968071y6

− 2898x8 + 47196x6y2 − 2062032x4y4

+ 3135684x2y6 − 1687998y8

+ 27x10 − 1197x8y2 + 44574x6y4

+ 398582x4y6 − 466089x2y8 + 138567y10] ,

y′ = y(4y2 − 1)(y2 − 1)

[−2781444096 + 15961670784x2 + 2054450304y2

− 5944652208x4 − 11696006016x2y2 − 469635408y4

− 531353088x6 + 4921574256x4y2 + 2210841216x2y4

+ 85920912y6 − 1044278703x8 + 1567739286x6y2

− 1800119052x4y4 + 47250378x2y6 − 27450981y8

+ 324385347x10 − 225498897x8y2 − 132437106x6y4

+ 233426286x4y6 − 43256673x2y8 + 4751379y10

− 35519341x12 + 24387792x10y2 − 8276229x8y4

+ 18209448x6y6 − 16665831x4y8 + 3878280x2y10 − 341415y12

+ 969969x14 + 877591x12y2 − 2909907x10y4 + 2607579x8y6

− 1508733x6y8 + 601749x4y10 − 115425x2y12 + 8505y14].

Proof of Theorem 8. By using Lemma 9 and the polynomial differential
systems listed above, which have as invariant straight lines those of Figures
1 to 8, Theorem 8 follows at once.

Unfortunately, we cannot compute the polynomial differential systems of
degree n ∈ {25, 31, . . . } having as invariant straight lines the lines of the
arrangements A(2n + 5). Even if we could compute them one by one, we
doubt that we could find a relationship among their coefficients and their
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degree. If we were able to do so, we would have counterexamples to the
Invariant Straight Line Conjecture for arbitrarily large degrees of the form
n = 25, 31, . . .

Remarks. 1. Obviously for every polynomial differential system all the
intersections among invariant straight lines are finite singular points. But
we want to point out that this does not imply at all that all finite singular
points must be the intersection of invariant straight lines; in fact, examples
to this effect are known.

2. The determination of the exact values of α(n) and γ(n) seems to be a
very challenging and hard task. This is made strikingly evident by the ab-
sence of any specific conjecture concerning these values. On the other hand,
all available information is consistent with the following open questions:

Question 1. α(n) = γ(n) for all n ≥ 1?

Question 2. limn→∞
α(n)

n
= limn→∞

γ(n)

n
= 2 as n→∞?
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