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Branko Grünbaum1 

Cyclic ratio sums and products 

The well known classical theorems of Menelaus and Ceva deal with certain 
properties of triangles by relating them to the products of three ratios of directed lengths 
of collinear segments.  Less well known is a theorem of Euler [2] which states, in the 
notation of Figure 1, that  ∑

j=1

3
  ||QBj/AjBj|| = 1  for every triangle  T = [A1A2A3].  

However, while the theorems of Menelaus and Ceva have been generalized to arbitrary 
polygons, and in many other ways –– see, for example, [4] [5] [6] –– until very recently 
there have been no analogous generalizations of Euler's result.  One explanation for this 
situation may be that attempts at straightforward generalizations lead to invalid 
statements.  An example of such a failed "theorem" is given by the question whether, in 
the notation of Figure 2,  ∑

j=1

n
  ||QBj/AjBj|| equals 1 or some other constant independent of  

Q  and the polygon.  Recently, Shephard [9] had the idea, apparently not considered 
previously, of attaching to the ratios  rj = ||(QBj)/(AjBj)||  certain weights  wj,  which 
depend on the polygon  p = [A1, A2, ... , An]  but not on the point  Q,  such that  ∑

j=1

n
  wj rj = 

1.  (In fact, Shephard established a much more general result in this spirit; its complete 
formulation would lead us too far from the present aims.)  

 By sheer chance, the same day I received from Shephard a preprint of [1], I 
happened to read [7], in which two different sums of ratios appear, one in Bradley's 

solution, the other in Konec#  ny′  's comments.  This coincidence lead me to consider 

whether these results could be generalized along Shephard's idea.  As it turns out, the 
answer is affirmative, and leads to a number of other results. 

 Let  p = [A1, A2, ... , An]  be an arbitrary  n-gon, and  Q  an arbitrary point, subject 

only to the condition that all the points  Bj  mentioned below are well determined.  On 
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each side  AjAj+1  of  p  (understood as the unbounded line) the point  Bj  is the 

intersection with the line through  Q  parallel to  Aj+1Aj+2.  (Here, and throughout the 
present note, subscripts are understood  mod n).  This is illustrated in Figure 3 by an 
example with  n = 5.  We are interested in the ratios  rj = ||BjAj+1/AjAj+1||.  We denote by  
Δ(UVW)  the signed area of the triangle  UVW  with respect to an arbitrary orientation of 

the plane and, more generally, by  Δ(p)  the signed area of any polygon  p,  calculated 

with appropriate multiplicities for the different parts if  p  has self-intersections.   

Theorem 1.  For each polygon  p  we have  ∑
j=1

n
   wj rj = Δ(p)  for all  Q,  where                  

wj = Δ(AjAj+1Aj+2)  are weights that depend on the polygon  p  but are independent of 
the point  Q. 

 For a proof it is sufficient to note that  

(i) by straightforward calculations or by easy geometric arguments it can be shown 
that  rj = Δ(QAj+1Aj+2)/Δ(AjAj+1Aj+2);  and 

(ii)  therefore the sum  ∑
j=1

n
   wj rj  is equal to ∑

j=1

n
  Δ(QAj+1Aj+2) = Δ(p),  since the 

triangles with vertex  Q  triangulate the polygon  p. 

 As a corollary we deduce at once that  ∑
j=1

n
  wj sj  =  (∑

j=1

n
  wj ) – Δ(p) , where             

sj = ||AjBj/AjAj+1|| = 1 – rj. 
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 In the special case that  p  is a regular  (n/d)-gon, all the weights  wj  are equal to 

the value  w = 4 sin3(dπ/n) cos(dπ/n).  (The regular  (n/d)-gon has  n  vertices and 
surrounds its center  d  times.  Successive vertices are obtained by rotation through 2πd/n,   
see [1].  It is usually assumed that  n  and  d  are coprime, but this is a restriction that is 
unnecessary here and in most other contexts, and downright harmful in some cases, see, 
for example, [3]).  Hence, in this case one can divide throughout by  w,  and the result 
becomes 

 ∑
j=1

n
   rj = Δ(p)/w = 

n
4 sin2(dπ/n)   .   (*) 

 Since the ratios  rj  involve only collinear lengths, the sum is invariant under 

affinities, and so the result  (*)  remains valid for all affine-regular  (n/d)-gons  p.  (An  

(n/d)-gon is affine-regular if it is the image of a regular  (n/d)-gon under a nonsingular 
affinity.)  Thus in this special case we actually achieve the analogue of the generally 
invalid statement mentioned above.  Since all triangles are affine-regular, this establishes 

the condition for concurrency found by Václav Konec#  ny′  , mentioned in [7].  (We note 

that Shephard obtains in [9] the analogous generalization of Euler's result to affine-
regular    n-gons.)  In the affine case, the above corollary can be simplified in the same 
way.  For       n = 3  this yields the condition for concurrency obtained by Bradley in [7]. 

 From the above it follows that in the case of affine-regular polygons (but not for 
general polygons) we have  

 ∑
j=1

n
    ||BjCj/AjAj+1|| =  – 

n cos(2dπ/n)
2 sin2(dπ/n)    ,  (**) 
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where the  Cj  is the intersection of the line  AjAj+1  with the parallel through  Q  to the 
line  Aj-1Aj  (see Figure 4).  For  n = 3  the right-hand side of (**) equals  1,  and the 
result coincides with Problem 16 in [8]. 

 It may be observed that for  n = 3  and  d = 1  the right-hand side of condition  (*)  
equals  1,  and the equality to  1  of the ratio sum is necessary and sufficient for the three 
parallels to the sides of the triangle to be concurrent, just as the equality to  1  of the 
product in Ceva's theorem for triangles is necessary and sufficient for theconcurrence of 
the Cevians.  However, for  n > 3  it is not obvious that the weights given above are the 
only ones which yield the right-hand constants for all  Q,  although one may conjecture 

that this is the case.  Naturally, for particular choices of  p  and  Q  other weights may be 

used. 

 The expression for  rj  obtained in (i), together with the analogous formula for the 
ratio  tj = ||AjCj/AjAj+1||  (in the notation of Figure 4) leads at once to the following: 

Theorem 2.  For each polygon  p  with we have  ∏
j=1

n
 
rj
tj  = ∏

j=1

n
 ||BjAj+1/ AjCj|| = 1  for all  Q. 

 Finally, since  QBjAj+1Cj+1  is a parallelogram for every  j,  we also have           
∏
j=1

n
   ||BjQ/QCj+2|| = 1. 

 This last is a Ceva-type result which seems not to have been noticed previously. 

* * * * * 

 A referee's suggestions for improved presentation are acknowledged with thanks. 
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Figure 1.  A theorem of Euler states that if  Bj  is the intersection of the line  AjQ  with 
the side of the triangle  A1A2A3  opposite to  Aj,  then  ∑

j=1

3
  ||QBj/AjBj|| = 1.   Here and 

throughout the note,  ||MN/RS||  stands for the ratio of signed lengths of the collinear 
segments  MN  and RS. 
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Figure 2.  Attempts to generalize Euler's theorem in the form ∑
j=1

n
  ||QBj/AjBj|| = const.  

necessarily fail for  n > 3  (here  n = 5).  However, as shown by Shephard [9], it is 
possible to find weights  wj  which depend on the polygon but not on the position of  Q, 
such that  ∑

j=1

n
  wj ||QBj/AjBj|| = 1.    



  Page 7 

Q

B5

B4

B3

B2

B1
A1

A2

A3

A4

A5

 

Figure 3.  The point  Bj  is the intersection of the line  AjAj+1  with the parallel through  
Q  to the line  Aj+1Aj+2.  The ratios  rj = ||BjAj+1/AjAj+1||  of directed segments are 
considered in Theorem 1. 
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Figure 4.  The point  Bj  is obtained as in Figure 3, while the point  Cj  is the intersection 
of the line  AjAj+1  with the parallel through  Q  to the line  Aj-1Aj.  The ratios  rj = 
||BjAj+1/AjCj||  of directed segments are considered in Theorem 2. 


