
ON  QUADRANGLES  DERIVED  FROM
QUADRANGLES -- PART 3

by Branko Grünbaum1

University of Washington, Box 354350, Seattle, WA 98195-4350
e-mail: grunbaum@math.washington.edu

The first two parts of this series ([6], [7]) dealt with properties
of quadrangles obtained by taking as vertices the incenters or the
orthocenters of the triangles determined by triplets of vertices of given
quadrangles.  Here we shall consider an analogous construction where
for every quadrangle  Q  = V1V2V3V4  a new quadrangle  C(Q ) =
C1C2C3C4  is formed by taking as vertices the circumcenters  Cj
(intersection points of perpendicular bisectors of the sides) of the
triangles  Tj = Vj–1VjVj+1,  for  j = 1, 2, 3, 4;  throughout, subscripts
should be reduced  mod 4.  This "circumcenter map" is illustrated in
Figure 1; in slightly different terminology and notation this
construction was considered in [4] and [5].

  C(Q)

Q

Figure 1.  An illustration of the circumcenter map leading from a
polygon  Q  to the polygon  C(Q).
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In the present note we shall establish some apparently new
properties of the circumcenter map.  We also report on the discovery
of a 150-years old solution of the problem posed by Langr [8] and
discussed in [4] and [5], and present a solution of this problem that is
simpler than the published ones.  Throughout, we shall assume that the
vertices of the quadrangles considered are in sufficiently general
position for the constructions considered to be possible and have
uniquely determined outcomes.  However, the quadrangles need not be
convex or simple.

The main result is the following fact about the circumcenter
map, the proof of which will also lead to a description of the map in
terms of geometric properties of the starting quadrangle:

Theorem 1.  For every  quadrangle  Q,  the quadrangle  O(Q )  is
affinely equivalent to  Q  under an affinity  α  = αQ.

We recall that an affinity  α  is a linear transformation  λ  of the
Euclidean plane onto itself, followed possibly by a translation  τ.
Theorem 1 was discovered experimentally, using "Geometer's
Sketchpad"® and "Mathematica"® on a Macintosh computer.

The proof is a straightforward exercise in analytical geometry.
It is preferably carried out using some symbolic algebra software
(I used Mathematica® V.3  on a Macintosh PowerBook 1400), but the
steps can be given easily enough.

We start by observing that (as easily verified) the circumcenter
of a triangle  T = ABC,  where  A = (a1, a2),  B = (b1, b2),  C = (c1, c2),
has coordinates
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Next we note that in order to show that two quadrangles are
affinely equivalent it is sufficient to establish that the intersection
points of the diagonals divide corresponding diagonals in equal ratios.
Without loss of generality we assume that the vertices of  Q  are given



Page 3

by  V1 = (a, b),  V2 = (c, d),  V3 = e(a, b) = (ea, eb),  V4 = f(c, d) =
(fc fd),  and therefore the intersection point of the diagonals is at the
origin  O;  see the notation in Figure 2.  Then the intersection point  X
of the diagonals of  C(Q).= C1C2C3C4  has coordinates given by the
rather unwieldy expression

X = 
(a2 + b2)(1 + e)d - (c2 + d2)(1 + f)b

2(ad-bc)   ,

  
-(a2 + b2)(1 + e)c + (c2 + d2)(1 + f)a

2(ad-bc)    
.
The radius-vector  OX  is the translational part  τ  of the affinity  α .
The coordinates of the vertices  Cj  are complicated as well, but for the
points  Cj - X   we have the much more revealing expressions:

C1 - X = 
(-(a2 + b2)e + (c2 + d2)f)

2(ad-bc)  d   ,   
((a2 + b2)e - (c2 + d2)f)

2(ad-bc)   c   

Figure 2.  Illustration of the notation used in the text.  The lengths  g*
and  g**  are signed, that is, they have opposite signs if  O  is between
V1  and  V3; similarly for  h*  and  h**.
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C2 - X = 
(-(a2 + b2)e + (c2 + d2)f)

2(ad-bc)  b   ,   
((a2 + b2)e - (c2 + d2)f)

2(ad-bc)  a    

C3 - X = 
(-(a2 + b2)e + (c2 + d2)f)

2(ad-bc)e  d   ,   
((a2 + b2)e - (c2 + d2)f)

2(ad-bc)e  c    

  C4 - X = 
(-(a2 + b2)e + (c2 + d2)f)

2(ad-bc)f  b   ,   
((a2 + b2)e - (c2 + d2)f)

2(ad-bc)f   a   .

Using the notation indicated in Figure 2 this can be written as

C1 - X = k (-d, c) = 
k
f  V4

⊥, C2 - X = k (-b, a) = 
k
e  V3

⊥

C3 - X = 
k
e  (-d, c)  = 

k
e  V2

⊥, C4 - X = 
k
f  (-b, a)  = 

k
f  V1

⊥

where  k  = 
(a2 + b2)e - (c2 + d2)f

2(ad-bc)   = 
g*g** - h*h**
4 area OV1V2     and  Vj⊥  is the

point obtained from  Vj   by a  90°  counterclockwise rotation about the
origin.

These are our main formulas.  From them follows that  C1 - X =
e(C3 - X)  and  C2 - X = f(C4 - X),  thus proving that  C(Q) is an affine
image of  Q  under an affinity  α  such that  α(V1) = C3,  α(V2) = C4,
α(V3) = C1,  α(V4) = C2.  Moreover, we see that the diagonals of
C(Q).are perpendicular to those of Q .  Since the determinant  Λ  of the
linear part  λ  of  α  equals the ratio of areas of C(Q).and  Q  we have

Λ = - 
k2
ef   = - 

(g*g** - h*h**)2

16(area OV1V2)2ef  = -  
(g*g** - h*h**)2

16(area OV1V2)(area OV3V4) 

This is of considerable interest in connection with Langr's problem
discussed below.  ◊

The simplicity of the main formulas allows to find the linear
part of the second iteration of the circumcenter map.  Let  C(C(Q)) =
D1D2D3D4  and let  Y  be the intersection point of the diagonals of
C(C(Q)). In order to apply the main formulas for the quadrangle with
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vertices  Cj - X , j = 1,2,3,4,  we need to replace  a, b, c, d, e, f, by  -kd,
kc, -kb, ka, 1/e, 1/f,  respectively,  and hence  k  by  k/ef.

Then the main formulas imply that

D1 - Y = 
k
ef  

1
1/f  (C4 - X) ⊥ =  

k
e  

k
f  V1⊥⊥ = - 

k2
ef    V1 = ΛV1.

Similarly we find

D2 -Y =  ΛV2,  D3 -Y =  ΛV3,   D4 -Y =  ΛV4,

which establishes the following

Theorem 2.  The iteration of the circumcenter map  C  leads from a
quadrangle  Q  to a quadrangle  C(C(Q))  which is homothetic to  Q  in
ratio  Λ,  the determinant of the linear part of the affinity which maps
Q  onto  C(Q).

The value of  Λ  in terms of geometric parameters of  Q  can be
easily determined using the expressions given above.

We conclude with some historical details; additional
information can be found in [4], [5].

Langr [8] posed the problem of

(i) showing that  C(C(Q))  is similar to  Q;  and

(ii) finding the ratio of similarity (which by the above is  Λ).

Chou [3, Example 65] established part (i), and Shephard [9]
gave for the solution of (ii) an expression which can be rendered in a
more symmetric form as

–8Λ =  ∑j  
1

sin2θj
    +   

sin θ1 sin θ3 + sin θ2 sin θ4
sin(θ1+θ3) sin (θ1+θ4)   · ∑j  (-1)j sin2θ;

here θj  is the "deflection" at vertex  Vj  of  Q,  see Figure 3.
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However, Langr's problem has already been solved more than
150 years ago!  In a pair of papers, Bretschneider [1], [2] develops a
long series of trigonometric and other formulas dealing with all sorts
of entities that can be associated with four points.  Among the (about
one hundred) formulas, some of them so long that they had to be
printed sideways on the pages, is an expression for  Λ.  To formulate
Bretschneider's result, let us denote by  dij  the distance between
vertices  Vi  and  Vj  of  Q .  Then Bretschneider first proves that the
numbers  p = d01 d23,  q = d02 d13,  and  r = d03 d12  (which involve the
sides and the diagonals of the quadrangle) satisfy the triangle
inequality.  Then he considers the quantity (which corresponds to the
Heron formula for the area of a triangle)

e = (p + q + r) (p + q – r) (p – q + r) (–p + q + r)/16

and defines  aj  as the area of the triangle with vertices  Vj-1, Vj, Vj+1.

With this notation  Λ  is given by  Λ = 
e

 a0 a1 a2 a3   .

It is interesting that there seems to be no easy way of
transforming one of the three expressions for  Λ  into another.

Figure 3.  An illustration of the "deflection"  θj  at the vertex  Vj.



Page 7

References.

[1] C. A. Bretschneider, Untersuchung der trigonometrischen
Relationen des geradlinigen Vierecks.  Archiv der Math. und Physik
2(1842), 225 - 261.

[2] C. A. Bretschneider, Ueber die abgeleiteten Vierecke, welche
von je vier merkwürdigen Punkten des geradlinigen Vierecks gebildet
werden. Archiv der Math. und Physik  3(1843), 84 - 93.

[3] S.-C. Chou, Mechanical Geometry Theorem Proving. Reidel,
Boston 1988.

[4]  B. Grünbaum, Quadrangles, pentagons, and computers.
Geombinatorics 3(1993), 4 - 9.

[5] B. Grünbaum, Quadrangles, pentagons, and computers,
revisited.  Geombinatorics 4(1997), 11 - 16.

[6] B. Grünbaum, On quadrangles derived from quadrangles.
Geombinatorics 7(1997), 5 – 8.

[7] B. Grünbaum, On quadrangles derived from quadrangles ––
Part 2.  Geombinatorics 7(1997), 41 - 46.

[8] J. Langr, Problem E1050. Amer. Math. Monthly 60(1953), page
551

[9] G. C. Shephard, The perpendicular bisector construction.
Geometriae Dedicata 56(1995), 75 - 84.


