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In [2] we discussed some properties of quadrangles obtained by
taking as vertices the incenters of the triangles determined by triplets
of vertices of given quadrangles.  Here we shall consider an analogous
construction, using orthocenters instead of incenters.

Given a quadrangle  Q = V1V2V3V4  a new  quadrangle  O(Q) =
H1H2H3H4  is formed by the orthocenters (intersection point of
altitudes)  Hj  of the triangles  Tj = Vj–1VjVj+1,  for  j = 1, 2, 3, 4;
throughout, subscripts should be reduced  mod 4.  This "orthocenter
map" is illustrated in Figure 1.

Although this construction appears quite natural, it seems not
to have been considered in the literature.  Only one well–known result
(see, for example, Coxeter [1, Section 1.7]), concerning the
orthocenter of an arbitrary triangle, can be interpreted as dealing with
the orthocenter map.  This result is the following:  If  D   is the
orthocenter of the triangle  T  = ABC,  then  A  is the orthocenter of
BCD,  B  is the orthocenter of  ACD,  and  C  is the orthocenter of
ABD ;  see illustration in Figure 2.  This clearly implies that the
quadrangle  Q = ABCD  coincides (with a permutation of the vertices)
with its image  O(Q) = CDAB  under the orthocenter map.

Our main result, illustrated by the examples in Figure 3,
concerns an unexpected aspect of the action of the orthocenter map on
quadrangles.  It was discovered experimentally, using computer soft-
ware "Geometer's Sketchpad"® and "Mathematica"® on a Macintosh
computer.  To formulate this result we recall that an affinity is a linear
transformation of the Euclidean plane onto itself, followed possibly by
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a translation; an equiaffinity is an area-preserving affinity.  We have:

Theorem 1.  For every  quadrangle  Q,  the quadrangle  O(Q )  is
affinely equivalent to  Q  under an equiaffinity  α = αQ.
Proof.  The proof is a straightforward exercise in analytical geometry.
It is preferably carried out using some symbolic algebra software, but
the steps can be given easily enough.  Starting, for example, with
vertices of  Q  given as  V1 = (p,q),  V2 = (1,0),  V3 = (r,s),  V4 = (0,1),
we find that the vertices of  O(Q)  have coordinates as follows:

H1 = (  
q + pq – q2
–1 + p + q    ,  

p – p2 + pq
–1 + p + q    ) ,

H2 = (  
–pq + pqr + q2s + rs – prs – qs2

–q + qr + s – ps   ,

   
–p + p2 + r – p2r – r2 + pr2 – pqs + qrs

–q + qr + s – ps    ) ,

H3 = (  
s + rs - s2
–1 + r + s   ,  

r – r2 + rs
–1 + r + s   ) ,

H4 = (  
q – q2 + pqr – s + q2s – prs + s2 – qs2

p – r + qr – ps    ,

     
pq – p2r + pr2 – pqs – rs + qrs

p – r + qr – ps    ) .
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Figure 1.  Construction of the quadrangle  O(Q)  (double lines) from
the quadrangle  Q  (heavy lines).  Only two altitudes (thin lines) are
shown for each of the four triangles, each of which is determined by
two adjacent sides of the quadrangle and one diagonal (not shown).
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The intersection points of the diagonals of the two quadrangles are

DQ = ( 
p – r + qr – ps
p + q – r – s   , 

q – qr – s + ps
p + q – r – s    )  and

DO(Q) = ( 
q + pq – q2 – s – rs + s2

p + q – r – s    ,  
p – p2 + pq – r + r2 – rs

p + q – r – s   ) .

From this it follows that  
|V3 – V1|
|V3 – DQ|  = 

|H1 – H3|
|H1 – DO(Q)|  =  

–p – q + r + s
–1 + r + s    

and  
|V4 – V2|
|V4 – DQ|  = 

|H2 – H4|
|H2– DO(Q)|  = 

–p – q + r + s
–p + r – qr + ps   , which shows the

affine equivalence of  Q  and  O(Q).  A calculation of areas shows that
Area (V1V2V3V4) = Area (H 1H2H3H4) = –p  – q  + r  + s ,  thus
completing the proof of the fact that  αQ  is an equiaffinity.

A B
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D

Figure 2.  If  D  is the orthocenter of the triangle  ABC  then each of
the four points  A, B, C, D  is the orthocenter of the triangle formed by
the other three.  This implies that the quadrangle  Q  = ABCD   is
mapped onto itself by the orthocenter map.
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Figure 3.  Three examples of iterations of the orthocenter map  O.  The
starting quadrangle is labelled 1, and the other numerals indicate the
iterates.  Examples like these led to the idea of affine equivalence of
the quadrangles  Q  and  O(Q).
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It is easily seen that if  Q  is a rectangle, or a selfintersecting
quadrangle whose vertices coincide with those of a rectangle, then
Q  = O(Q)  (although in the selfintersecting case the vertices are
permuted by a reflection of the quadrangle).  Thus the quadrangles
illustrated in Figure 2 are not the only ones with the property of
coinciding with their image under the orthocenter map.  We conjecture
that the examples mentioned so far are the only quadrangles  Q  such
that  Q  = O (Q).  On the other hand, there are other quadrangles  Q
which are congruent to their image  O(Q)  without coinciding with it.
One family of these quadrangles is characterized by the following
result:

Theorem 2.  A quadrangle  Q  is congruent by a half-turn (that is,
homothetic in ratio  –1)  to its image  O(Q)  under the orthocenter map
if and only if  Q  is cyclic.
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Figure 4.  Relationships of various distances in an arbitrary quadrangle
Q = V1V2V3V4.  For the triangle   Ti = Vi–1ViVi+1  the points  Hi,  Gi,
Ci  are, respectively, the orthocenter, the centroid and the
circumcenter.  The centroid of the quadrangle  Q   is  G.  By Euler's
theorem (see [1, Section 1.6] on the mutual positions of  Hi, G i, Ci
the ratio of distances on the segments they determine is as indicated,
and the ratio of segments determined by  Vi+2, G , Gi  is as given
because of the numbers of points involved.  By elementary
consideration of ratios of segments determined by parallels it follows
that  Xi  is the midpoint of H iVi+2,  and that  G   is the midpoint of
CiXi.
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Proof.  With the notation introduced in Figure 4 we see that if  Q  is
cyclic then all four points  Ci  coincide, hence all points  Xi  coincide.
Therefore  O(Q)  is congruent to  Q  by a half-turn.  Conversely, if
O(Q)  is congruent to  Q  by a half-turn, then all points  Xi  coincide,
hence all points  Ci  coincide, and so  Q  is cyclic.

Figure 5 gives illustrations of the situation described in
Theorem 2.

It may be conjectured that every  Q  which is congruent to
O(Q)  is related to  O(Q)  by a translation or a half-turn.

Among other open problems is the question of characterizing
the area-preserving affinity  αP  in terms of the quadrangle  P.  Also,
nothing seems to be known about properties of  O(P)  for  n-gons  P
with   n ≥ 5.

Helpful comments by Prof. Coxeter are gratefully
acknowledged.
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Figure 5.  Examples of cyclic quadrangles.  Each such quadrangle  Q
is congruent by a half-turn to its images  O(Q)  under the orthocenter
map.


