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Abstract. The purpose of this paper isto state and prove atheorem (the CM S Theorem) which gener-
alizesthe familiar Ceva's Theorem and Menelaus' Theorem of elementary Euclidean geometry. The
theorem concerns n-acrons (generalizations of n-gons) in affine space of any number of dimensions
and makes assertions about circular products of ratios of lengths, areas, volumes, etc. In particular it
contains, as special cases, many resultsin this area proved by earlier authors.
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1. Introduction

The theorems of Ceva and Menelaus are well-known results in the elementary
geometry of triangles. Since the early 19th century they have been generalized to
polygons with more sides and in various other directions (for example, by Carnot
[4] and Poncelet [20]; see [12] for more details and the history of these results).
Variants of these theorems for pentagons are illustrated in Fig. 1, together with
a related result which we call selftransversality. This seems to have been first
formulated in [12]. Each asserts that, in a suitable n-gon, the circular product of
n ratios of the oriented lengths of certain line segments has a fixed value +1 or
—1; the segmentsin question are determined either by agiven line (for Menelaus),
by a given point (for Ceva), or by the polygon itself (for the selftransversality
result). For the formulation of these and related theorems see, for example, Carnot
[4, p. 295], Poncelet [20 p. xix], Gonzalez [11], Shklyarskii et al. [22, pp. 48,
318-319], Schroder [21, p. 113], Eves[7, pp. 63, 64], Grinbaum and Shephard
[12]; the proofs of the theorems of Cevaand Menelausin the case of triangles can
also be found in many other books. The precise statements of the casesillustrated
in Figure 1 are given in the caption to the figure. As noted by Carnot, Poncelet and
others, Menelaus' theorem can be extended to n-gonsin Euclidean d-space. Other
authors discussed various generalizations of the theorems of Ceva and Menelaus
to (d + 1)-gons in Euclidean d-space, or in spherical or hyperbolic d-spaces; see,
for example, Nadenik [19], Molnér [17], [18], Gluskov [9], [10], Boldescu [1],
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Budinsky’ and Nadenik [3], Budinsky’ [2], Klein [13], Fearnley-Sander [8], Mao
[15], Landy [14], Erdniev and Mancaev [6], Masal’ cev [16].

The purpose of this paper is to formulate and prove a theorem which we call
the CM S theorem, where CM S stands for Ceva—Menelaus-Selftransversality. The
CM Stheorem containsas special casesmany of the results of the papers mentioned
above. Our theorem makes assertions not only about the ratios of lengths of line
segments, but also about ratios of areas and volumes of triangles and simplices
defined by the vertices of the n-gon and by transversals of appropriate dimension.
The method of proof is an extension of the ‘area principle’ usedin [12]. We begin,
in Section 2, with the necessary definitions and notation. Section 3 is devoted to a
statement the theorem, and to adiagrammatic method for the explicit determination
of the cases to which the theorem is applicable. In Section 4 we give a proof of
the theorem, and conclude, in Section 5, with a number of examples and general
comments.

2. Definitions and Notation

Throughout this note, we work in affine space A? of d > 2 dimensions. Let
Vi,...,V, beaset of n > 3 points in general position, that is, such that for
1 <m < min{d,n — 1} every subset consisting of m + 1 of the pointsis affinely
independent. By the polyacron (or n-acron) P = [V4,. .., V,] we mean the points
V1,...,V, (the vertices of P) considered as a cyclic sequence, together with
the sides and diagonals of P of various dimensions. For an integer f such that
1< f <d,and f + 1lintegersio, i1, . .., 4y, (@l different modulo n) an f-diagonal
of P of type (io, i1, .. .,4y) istheaffine f-flat aff (Vi,, ..., V;,) spanned by the set
Vigs -+, Vi, of verticesof P. Inparticular, if the given verticesare consecutive, then
the f-diagonal isalso called an f-sideof P. Inthecase f = 1 we shall often write
‘side’ or ‘diagonal’ instead of ‘1-side’ or ‘1-diagonal’. Here, and throughout, the
subscript 7 runsfrom 1 to n, and all subscripts 5 are reduced modulo n so that they
satisfy 1 < j < n. A polyacronisregarded asunchanged by any cyclic permutation
of the vertices and so is oriented in the sense that the orientation is changed by
reversing the order in which its vertices are listed. Polyacrons are special kinds of
families of affine flats; in the context of the results discussed here, they seem to be
anatural generalization of polygonsto d > 2 dimensions.

The term ‘polyacron’ is not new; it was coined by the nineteenth century
mathematician T. P. Kirkman (famous for his*school girls problem’ and deserving
to be better known for his many other contributions to mathematics) and it appears
in the Oxford English Dictionary.

Given two r-simplices [Uy, . .., U, ] and [Vp, ..., V,] contained in the same 7-
flat, we use the symbol [Up ... U, /Vy ... V,] to denote the quotient of the absolute
values of the r-contents of the two simplices, prefixed by a + or a— sign according
to whether the simplices are oriented in the sameway or oppositely. Thissymbol is
avery useful affineinvariant. In particular, [AB/C D] istheratio of the lengths of
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Figure 1. lllustrations, for apentagon P (more precisely, asexplained in thetext, for a5-acron)
with vertices V1, V2, V3, Vi, Vs of one variant each of the classical theorems of Menelaus and
Ceva, and of the recent selftransversality result. All points and lines are assumed to be in
suitably general positions so that the ratiosinvolved are defined; ¢( B, C') denotes the oriented
length of the segment [B, C].

@

(b)

(©

Menelaus' theorem: If any line L intersects the side A; A; 1 of P in the point M;,
then

5

Hz zHM =1

i=1

Ceva'stheorem: If P isany point and C; istheintersection point of theline PV; with
theline V42V 43, then

Selftransversality: If Y; is the intersection point of the lines V;V;4+1 and V42V 44,
then

H £ Vz+1Y

In terms of Table 1 (the meaning of which is explained below), (a) corresponds to entry (5),
(b) to entry (3), and (c) to entry (1). Moreover, (c) can be interpreted also asillustrating entry
(2), according to which

5
H ‘/l l+3
P} £(Viq2Yita)
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the line segments [A, B] and [C, D], with a+ or — sign to indicate whether these
line segments (or vectors) have the same, or directly opposite directions.

The idea of our theorem is simple. We start from an n-acron P and a (fixed)
g-flat Q in A%. Assume these and all other objects under discussion are in general
position. For each r-diagona R; of P of achosen type we specify, in a prescribed
manner, an s-diagonal S; wheres = d—q—r— 1. Thenthetransversal aff (QUR;),
specified by the anchor () and the diagonal R;, meets S; in a single point. This
point, together with vertices of P, is used to specify two s-dimensional simplices.
The theorem asserts that (under certain specified conditions), the circular product
of theratios of the s-dimensional contents of these simplices, has a constant value
+1 or —1. The precise statement of the theorem is given in the next section.

The traditional version of Ceva's theorem for a triangle (actually a 3-acron)
correspondstothecased =2, n = 3,¢q =0, r = 0, s = 1. Here the anchor @ is
afixed point, R; runs through the vertices of P, and for each R;, S; isthe 1-side
of P which does not contain R;. The theorem is concerned with the ratios of the
lengths of line segmentsdefined by vertices of P, and the intersection points of the
transversalsdefined by (@ and R; withthesides S;. Menelaus' theorem corresponds
tod=2,n=3,¢q=1r=—-1,s = 1sotheanchor @) isafixed line and each R;
is the empty set. The theorem concerns the ratios of the lengths of line segments
defined by the intersection points of @) with the sides S; of P. For the pentagonsin
Figure 1(a) and (b), the parameters take the same values except that n = 5. Figure
1(c) showsthecased = 2,n = 5,¢q = —1,r = s = 1, so the anchor () is the
empty set. The theorem makes an assertion about the ratios of the lengths of the
line segments defined by vertices of P and the intersection points Y; of diagonals
R; = aff(Vi42, Viya) with sides S; = &ff (V;, Viy1) oOf P.

3. Formulation of the Result

Let P = [V4,...,V,] beapolyacronin A?, where1 < d < n — 1. Let ¢,r, s be
integerssuchthat -1 < ¢ <d—-1,-1<r<d—-11<s<min{d,n—r—2}
andqg+r+ s+ 1= d. Further let A = (ao,...,as) and B = (bo,...,b,) be
sequences of integers such that all the elements of A U B are distinct modulo .
Let S; denote the s-diagonal aff (Vita, Vitays-- -, Vita,) @nd R; the r-diagonal
af (Vitvgs Vikbys - - - Vigs, ). Let Q beag-flat such that, for eachi = 1,...,n, the
(g+r+1)-flat aff (QU R;) spanned by Q and R; meetsthe s-diagonal S; inasingle
point Y; which (by the assumed general position of the vertices) must be distinct
from Viyags Vitass-- - Vita,. (If ¢ = =1 0r r = —1 then the corresponding flat
Q or R isinterpreted as being empty. Note that ¢ = » = —1 is excluded by the
assumptions on the parameters.) Now define

n

p(PiA,B,Q) =]

1=1

V;-I—ao‘/;-l—al e %+aS,1Y'i
Vz’+a1‘/i+a2 ree Vz’+as}/i

D
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Thisisthe circular product of ratios mentioned at the end of the previous section.
Conditions under which the product (1) takes a fixed value +1 or —1 are given by
the following result:

THE CMS THEOREM. Given an n-acron P in A4, sequences of integers A, B,
and aflat ) as specified above, then p(P; A, B, Q) isa constant independent of P
if and only if there exists an integer & such that, modulo n, the sequence

(ao+ k,a1+k,...,as_1+k,bo+ k, b1+ k,... b, +k)
isa permutation = of the sequence
(a1,a2,...,as,b0,b1,...,b;).

The value of the constant is given by p(P; A, B, Q) = (e(n))", wheree(n) = 1if
7 isan even permutation and e(r) = —1if 7 isan odd permutation.

If s = 1, theright side of (1) becomes the product of n quotients of lengths of
line segments; hence our theorem is seen to include, as special cases, both Ceva's
and Menelaus' theorems for n-gons, as well as the selftransversality result from
[12].

Before giving a proof of the theorem we shall give a geometric interpreta-
tion of the condition stated in the theorem. To do this we use what we shall
cal CMS-diagrams. Start with a regular plane n-gon N, number the vertices of
N consecutively in a positive direction, and mark those that correspond to the
integers a; and b;. The vertices corresponding to ag and a, are marked in such
a way that they can be distinguished from those corresponding to ay,...,as 1
and by, ..., b,. See Figure 2(a) for an example withn = 9, A = (0,1,2,3) and
B = (4,6, 8); themarkings are explained in the caption to thefigure. The condition
of the theorem holds if and only if the two sets of vertices, corresponding to the
integersag, . ..,as 1,bo,...,b.-andtoas, ..., as, by, ..., b, aredirectly congruent
(asunmarked sets); that is, one can be madeto coincide with the other by a suitable
rotation about the centre of the polygon N. For the example of Figure 2, part (b)
shows the two sets of vertices, and it will be observed that the second set can be
obtained from the first by a rotation through angle 47 /9. Hence, in this case, the
condition of the theorem holds.

Although the theorem holds for all values of the parameters specified at the
beginning of this section (with appropriate choices of A and B), if s = d the
assertion becomes trivia in the following sense: the terms in the numerator and
denominator of (1) areidentical (apart from a possible permutation of the vertices
defining the simplices), so complete cancellation can be carried out, yielding 1
or —1.
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(a)

(b)

Figure 2. (a) A CMS-diagram for n = 9, with A = (0,1,2,3) and B = (4,6, 8). Points
corresponding to ao, as are marked ©, those corresponding to a1,a2 and to bo, b1, be are
marked 0. Here s = 3 and r = 2. Because the two sets of points marked in (b) are directly
congruent, the sets A and B satisfy the condition of the CMS theorem.

Thisisillustrated in Figure 4. In () wehaven = 5,d = 2,q = -1, 7 =0,
s=2,A=(1,2,4) and B = (3). Then the product (1) involves quotients of the
areas of triangles. Explicitly thisis

[VlVZVS} [V2V3V4} {V3V4V5] {V4V5V1] {V5V1V2]
VoVaVs V3 sz VaVh V5 VSVZVl ViV3Ve
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Figure 3. By projection along @, thetheorem of Menelausfor dimensiond = 2, n = 5reduces
to the theorem of Cevafor dimensond’ = 1:

5 ‘/zMz 5 Vi/Q/
H |:Vi+1Mi:| - H |:Vi’+1Q’:| - 1’

i=1 i=1

and the latter istrivial in the sense described in Section 3.

and the cancellations become evident. On the other hand, if all the parameters (as
well as A and B) take the same values, except that d = 3 and ¢ = 0, we arrive at
the situation shown in Figure 4(b). Here the anchor @ is a fixed point and the line
aff (Q, V3) meetsthe planeaff (V1, V2, Va) in Ys. The other pointsY; are determined
by cyclically changing all the subscripts (mod 5). The theorem makes an assertion
about the product p(P; A, B, Q) of 5 terms of the form

[(V;—I—l‘/;-i-zyvi + 3)/(%—1—2%—1—4%—1—3)] (Z = Oa 13 23 33 4)

and clearly this result is far from trivial. In a similar way we obtain a non-trivial
result (not illustrated) with the same values of the parameters (aswell as A and B)
except that d = 4, g = 1. Another trivial example, correspondingtod = 2,q = 0,
r=-1s=2 A= (1,23)and B = ), isillustrated in Figure 4(c).

In Table | we list al the non-trivial assertions of the theorem in the case
n = 5. For each of the possible values of the parameters and of the dimension
(in this case d = 2,3 or 4) we can readily determine the permissible sets A
and B using the CMS-diagrams. It will be seen that, in the case of pentacrons,
the CMS theorem makes 34 non-trivial assertions, many of which appear to be
new.
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Table I. The essentially different possibilities of the parameters d, ¢, r, s and sets A and B for which
the CM S theorem isvalid and non-trivial whenn = 5. Sincen isodd wehavee(r) = p(P; A, B, Q).

List d q r s A B e(m) Remarks
number =p(P; A, B,Q)
1 2 -1 1 1 (1,2 (3,5) 1 Figue 1(c)
2 2 -1 1 1 (1,3 (4,5) 1 Figure 1(c)
3 2 0 0 1 (1,2 4 -1 Ceva's theorem
Figure 1(b)
4 2 0 0 1 (1,3 2 -1
5 2 1 -1 1 (1,2 %] 1 Menelaus' theorem
Figures 1(a), 3

6 2 1 -1 1 (1,3 4] 1
7 3 -1 1 2 (1,23 (4,5) 1
8 3 -1 1 2 (1,32 (4,5) 1
9 3 -1 1 2 (1,29 (3,5) 1

10 3 -1 1 2 (L42 (3,5) 1

1 3 -1 2 1 (1,2 3,45 -1

12 3 -1 2 1 (1,3 (2,45 -1

13 3 0 0 2 (1,29 ?3) -1 Figure 4(b)

14 3 0 0 2 (1,32 (5) -1

15 3 0 1 1 (1,2 (3,5) 1

16 3 0 1 1 (1,93 (4,5) 1

17 3 1 -1 2 (1,23 %) 1

18 3 1 -1 2 (1,42 @ 1

19 3 1 0 1 (1,2 4 -1

20 3 1 0 1 (1,3 2 -1

21 3 2 -1 1 (1,2 %) 1

2 3 2 -1 1 (1,3 %) 1

23 4 0 0 3 (1,234 (5 -1

24 4 0 0 3 (1,243 (5 -1

25 4 0 0 3 (1,245 3 -1

26 4 0 1 2 (1,23 (4,5) 1

27 4 0 1 2 (1,32 (4,5) 1

28 4 0 1 2 (1,29 (4,5) 1

29 4 0 1 2 (L42 (3,5) 1

30 4 0 2 1 (1,2 (4) -1

31 4 0 2 1 (1,3 2 1

32 4 1 -1 3 (1,234 O 1

33 4 1 -1 3 (1,352 @ 1

34 4 1 0 2 (1,29 3) -1

3B 4 1 0 2 (1,32 (5) -1

336 4 1 1 1 (1,2 (3,5) 1

37 4 1 1 1 (1,3 (4,5) 1

38 4 2 -1 2 (1,23 @ 1

39 4 2 -1 2 (1,42 @ 1

40 4 2 0 1 (1,2 (4 -1

41 4 2 0 1 (1,3 2 -1

2 4 3 -1 1 (1,2 @ 1

43 4 3 -1 1 (1,3 @ 1
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(b)

Figure4. (@) Thecasen = 5,d = 2,q = —1,r =0,s = 2, A = (1,2,4) and B = (3). One
of the ratios used in the compilation of p(P; A, B, Q) is [ViV2V3/V2V4V3] which is the ratio
of the areas of the two shaded triangles. The other four ratios are obtained by cyclic changes of
the subscripts (mod 5). Since the areas of thetriangles cancel, were refer to this case astrivid.
(b) A non-trivial result in three dimensions (entry (13) in Table 1) in which the parameters (as
well as A and B) take the same values asin (8) except that ¢ = 1, d = 3. Theline &f (Q, V)
meets the plane aff (V1, V2, Va) in the point Ys. One of the ratios used in the compilation of
p(P; A, B, Q) is[ViV2Ys/V2VaYs] which isthe ratio of the areas of the two shaded triangles.
The other four factors are obtained by cyclic changes of the subscripts (mod 5). In this case
thereis no trivial cancellation. (c) If thisfigureisinterpreted in d = 2 dimensions, with @ as
afixed point, theresult istrivial.

4. Proof of the Theorem

Choose ¢ + 1 points X, ..., X, in Q in such away that the n 4 ¢ + 1 points
Va,...,Vp, Xo,..., X, arein general position. Let the position vectors of points
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in A% be represented by the corresponding lower case letters, so that apoint U; has
position vector u; with components (u;1, u;2, - - -, uiq). In terms of determinants,
the condition for d + 1 points Uy, Us, ..., Uy toliein ahyperplaneis

[wor w11 - - ugp ]

upL U2 -+ v Udp
D(uo,...,uq) = det =0

Upd Uld * * Udd

10111 1 |

Fori =1,...,n let H; bethe hyperplane spanned by the (s — 1) + (r + 1) +
(q+1)=dpointsViia,- - Viva,_1s Vitbgs - - - » Vitn,» Xo, - - - » X, and SUppOSE
H; meets the 1-diagonal aff (V;q,Vita,) in the point W;. Because of the assumed
generality of position of the points, W; will be uniquely determined and distinct
from Viyq, and Vipq,. Then w; = (1 — A\j)visq, + AiVita, fOr some value of \;,
and

‘/i-i-ao WZ:|
I/i+a,5, Wz

Vi—l—aoVi-i-al e V;-I—(LS,;LY;;
‘/z'+as I/i+a,1 Tt ‘/i+as_1Y;

‘/i+ao Tt ‘/i+as_1}/i:| (2)
I/i+a,1 U ‘/i+a53/i '

The second equality holds since the simplicesin the numerator and denominator of
the last expression have the same base [V, . . ., Vita, ,, Yi] and so their signed
volumes are proportional to their heights, namely the signed lengths of the line
segments [V; 44, W3] @and [Vi1q,, W;]. Thisis the extension of the ‘area principle
from [12] mentioned in the Introduction; it could be called the *volume principle’.
(Inthe case s = 1, the second equality of (2) isan identity sinceY; = W;.)

Now, as W; liesin the hyperplane H;,

N—1

= (-

0 = D(Wi, Vitags---»>Vitas_1> Vitbys -« - 3 Vitbyr L0y« - - s Lq)
= D((1 = Xi)Vitag + AiVitass Vitars - - - s Vitas_11 Vitbgs - - > Vitbys L5 - - - L)
= (L= Xi)D(Witag + Vitars- -+ > Vitas_1> Vitbys -« - s Vitbyr L0y« - - s Lq)
FXiD(Vitays Vitass - - - s Vitas_1s Vitbgs - - - » Vickbys L0« -« » Lg)

and solving for A;/(A; — 1) we obtain

Ai . D(vi+a07 Vitayy -+ 5 Vitag_1y Vitbgs -+ - » Vitby L0y - - - qu)
Ai—1 D(Ui—l—asavi—l—ala <oy Uitas_15 Vitbgy -+ - 5 Vit s L0y - - - 7xq)
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— (_1)5—1D(Ui+aoa Vitays - -+ Vitas_ 15> Vitbgs - - - » Vitb.r LOs - - - 7xq) ‘ (3)
D(Ui-l—ala ~e oy Vitay_15Vitass Vi+bgs - - - 9 Vitb,» LOy - - - 7xq)

Taking the product from i = 1to ¢ = n, we see that the determinants in the
numerator are, up to a permutation of columns, exactly those in the denominator if
and only if condition given in the statement of the theorem holds. Moreover, this
permutation of columns introduces n times the factor e(r) into the value of the
determinant. In all, we have, from (2) and (3),

p(P;A,B,Q) = | {“Hae"'vmlei
y 41, Dy b} Vigay " Ui-l-asY;;
n s 1)\
H = (e(m))"
et >\ -1
as claimed.

5. Remarksand Examples

(i) We note that the proof of the CM S theorem in Section 4 could be amplified
by showing that the condition of the theorem is not only necessary for the algebraic
cancellation of the ratios involved in the product, but that even numerically such
cancellation can occur for all polyacronsonly if the conditionisfulfilled. Thisisan
easy consequenceof thefact that if apolynomial (in any given number of variables)
has the value zero for al choices of real values of its variables, then it must be
identically zero (that is, al its coefficients must equal 0). Of course, it is possible
for the product in the theorem to have value 1 (or —1) for a particular choice of the
parameters and points even if the condition is not satisfied.

(i) The parity of the permutation 7, which appears in the formulation of our
theorem, obviously does not depend on the number of elements in B as long as
B # (). Asaconsequence, thecasesq > 0 of thetheorem (which can beinterpreted
asgeneralizationsof thetheorem of Menelaus) are simple consequencesof the cases
in which ¢ = 0 (which correspond to Ceva's theorem). More geometrically, the
assertion of the theorem for a given polyacron P with any givend and ¢ > 0 canbe
reduced to the one for apolyacron P’ withd' = d — g and ¢ = 0 by projecting the
polyacron along () onto ad’'-dimensional flat complementary to Q. An exampleis
shown in Figure 3. Clearly the statement of Menelaus' theorem for the pentacron
P follows immediately from that for the projected pentacron P’, and as the latter
istrivial, we arrive at a simple and elementary proof of Menelaus' theorem when
n = 5 (and, by obvious extension, to all n > 3).

(iii) Since it is difficult to illustrate the theorem by intelligible diagrams if
d > 3, we shall describe some of the cases whered = 3 and n = 5. Entry (12)
of Table | shows that if T¥; is the intersection of the line aff (V; 1, V;13) with the
plane aff (V;2Vi14, V;), then the product (for 1 < 7 < 5) of the ratios of directed
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Figure 5. The simplest selftransversality result. Hered =2, n =4, g = -1, r =1, s =1,
A= (1,2) and B = (3, 4). In the notation of the diagram,

Wy | WYz, |VaYs| | | Vala| _ 1
Vo1 VaY2 VaYs V1Ya ’

It is remarkable that such a simple result has not previously appeared in the literature, except,
so far aswe are aware, in Carnot’s book [4] published in 1803.

lengths of [V;;1, W;] and [V;3, W;] equals —1. On the other hand, entry (7) shows
that if W; = aff (Vj11, Vit2, Viys) Naff(Vita, Vi) then the product of thefiveratios
of oriented areas of the triangles V;1V; oW, and V;, oV, 3W; is 1. Entry (13)
corresponds to the case in which a fixed point () is given, and the intersection of
the line aff (@) V;4.3) with the 2-diagonal aff (V;11, Vit2, Vi+4) determines a point
W;. Then p(P; A, B, Q) is the product of the ratios of the areas of the oriented
triangles V; .1V oW; and V; 1 oV 4W;, and isequal to —1.

(iv) In some contexts it is not necessary to assume, in the definition of a
polyacron, that its vertices are in general position. Instead, it may be sufficient
to require the affine independence only of sets of points (of certain specified sizes)
that occur in the statement of a theorem or its proof. It seemed unnecessary to
burden the formulation of our theorem with details of these possibilities.

(v) It israther remarkable that the ‘ selftransversality’ results, corresponding to
Q = 0 in the CMS theorem, seem not to have been mentioned in the literature —
even in thefirst non-trivial cased = 2,n = 4, A = (1,2), B = (3,4), seeFigure
5, or in the next two cases (for d = 2,n = 5) illustrated in Figure 1(c). The only
exception to this of which we are aware is that the first-mentioned result appears
(in different notation) in [4, p. 279, Théoreme V1].
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(vi) The sdftransversality theorem of this paper was originally suggested by
empirical resultsfor polyacrons(for small n and d) obtained using aMacintosh I1cx
with Mathematica(©) software. The proofs of these results suggested the general
form of the theorem stated above. It seems likely that other theorems about plane
n-gons admit anal ogous generalizations to polyacrons.

(vii) Even if the sets A and B fail to satisfy the condition of the theorem, it
may be possible to determine the value of the product p(P; A, B, Q) in terms of
other circular products. For example, using the ‘volume principle’ it is possible
to prove results of the following kind: Given any n-acron P, with n > 5 and
fiveintegers a, 3,7, 0, € distinct modulo n, then, with A = («, 8,7, 0), B = (e),
A* = (a, B,7), B* = (d,¢), A" = (o, §) and B** = (v, 0, €), we have

p(Pi A, B,0) = (—1)"p(P; A*, B*,0) = p(P; A™, B™,0).

(viii) The‘volume principle’ isnot new. Without aspecial name, it has probably
been used by many people, and in many contexts. For example, in [5, p. 131], it
is used to prove a theorem on the sum of the ratios of lengths in which a point
partitions transversals from the vertices of a tetrahedron to the opposite faces.
However, it seems that the method has not been previously applied to the topic of
this note, nor hasits wider utility been noted.
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