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Abstract. The purpose of this paper is to state and prove a theorem (the CMS Theorem) which gener-
alizes the familiar Ceva’s Theorem and Menelaus’ Theorem of elementary Euclidean geometry. The
theorem concerns n-acrons (generalizations of n-gons) in affine space of any number of dimensions
and makes assertions about circular products of ratios of lengths, areas, volumes, etc. In particular it
contains, as special cases, many results in this area proved by earlier authors.
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1. Introduction

The theorems of Ceva and Menelaus are well-known results in the elementary
geometry of triangles. Since the early 19th century they have been generalized to
polygons with more sides and in various other directions (for example, by Carnot
[4] and Poncelet [20]; see [12] for more details and the history of these results).
Variants of these theorems for pentagons are illustrated in Fig. 1, together with
a related result which we call selftransversality. This seems to have been first
formulated in [12]. Each asserts that, in a suitable n-gon, the circular product of
n ratios of the oriented lengths of certain line segments has a fixed value +1 or
�1; the segments in question are determined either by a given line (for Menelaus),
by a given point (for Ceva), or by the polygon itself (for the selftransversality
result). For the formulation of these and related theorems see, for example, Carnot
[4, p. 295], Poncelet [20 p. xix], Gonzalez [11], Shklyarskii et al. [22, pp. 48,
318–319], Schröder [21, p. 113], Eves [7, pp. 63, 64], Grünbaum and Shephard
[12]; the proofs of the theorems of Ceva and Menelaus in the case of triangles can
also be found in many other books. The precise statements of the cases illustrated
in Figure 1 are given in the caption to the figure. As noted by Carnot, Poncelet and
others, Menelaus’ theorem can be extended to n-gons in Euclidean d-space. Other
authors discussed various generalizations of the theorems of Ceva and Menelaus
to (d + 1)-gons in Euclidean d-space, or in spherical or hyperbolic d-spaces; see,
for example, Nádenı́k [19], Molnár [17], [18], Gluskov [9], [10], Boldescu [1],
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Budinsky’ and Nádenı́k [3], Budinsky’ [2], Klein [13], Fearnley-Sander [8], Mao
[15], Landy [14], Erdniev and Mancaev [6], Masal’cev [16].

The purpose of this paper is to formulate and prove a theorem which we call
the CMS theorem, where CMS stands for Ceva–Menelaus-Selftransversality. The
CMS theorem contains as special cases many of the results of the papers mentioned
above. Our theorem makes assertions not only about the ratios of lengths of line
segments, but also about ratios of areas and volumes of triangles and simplices
defined by the vertices of the n-gon and by transversals of appropriate dimension.
The method of proof is an extension of the ‘area principle’ used in [12]. We begin,
in Section 2, with the necessary definitions and notation. Section 3 is devoted to a
statement the theorem, and to a diagrammatic method for the explicit determination
of the cases to which the theorem is applicable. In Section 4 we give a proof of
the theorem, and conclude, in Section 5, with a number of examples and general
comments.

2. Definitions and Notation

Throughout this note, we work in affine space A
d of d � 2 dimensions. Let

V1; : : : ; Vn be a set of n � 3 points in general position, that is, such that for
1 � m � minfd; n� 1g every subset consisting of m+ 1 of the points is affinely
independent. By the polyacron (or n-acron) P = [V1; : : : ; Vn] we mean the points
V1; : : : ; Vn (the vertices of P ) considered as a cyclic sequence, together with
the sides and diagonals of P of various dimensions. For an integer f such that
1 � f � d, and f +1 integers i0, i1; : : : ; if , (all different modulo n) an f -diagonal
of P of type (i0, i1; : : : ; if ) is the affine f -flat aff(Vi0 ; : : : ; Vif ) spanned by the set
Vi0 ; : : : ; Vif of vertices ofP . In particular, if the given vertices are consecutive, then
the f -diagonal is also called an f -side of P . In the case f = 1 we shall often write
‘side’ or ‘diagonal’ instead of ‘1-side’ or ‘1-diagonal’. Here, and throughout, the
subscript i runs from 1 to n, and all subscripts j are reduced modulo n so that they
satisfy 1 � j � n. A polyacron is regarded as unchanged by any cyclic permutation
of the vertices and so is oriented in the sense that the orientation is changed by
reversing the order in which its vertices are listed. Polyacrons are special kinds of
families of affine flats; in the context of the results discussed here, they seem to be
a natural generalization of polygons to d > 2 dimensions.

The term ‘polyacron’ is not new; it was coined by the nineteenth century
mathematician T. P. Kirkman (famous for his ‘school girls problem’ and deserving
to be better known for his many other contributions to mathematics) and it appears
in the Oxford English Dictionary.

Given two r-simplices [U0; : : : ; Ur] and [V0; : : : ; Vr] contained in the same r-
flat, we use the symbol [U0 : : : Ur=V0 : : : Vr] to denote the quotient of the absolute
values of the r-contents of the two simplices, prefixed by a + or a� sign according
to whether the simplices are oriented in the same way or oppositely. This symbol is
a very useful affine invariant. In particular, [AB=CD] is the ratio of the lengths of
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Figure 1. Illustrations, for a pentagon P (more precisely, as explained in the text, for a 5-acron)
with vertices V1; V2; V3; V4; V5 of one variant each of the classical theorems of Menelaus and
Ceva, and of the recent selftransversality result. All points and lines are assumed to be in
suitably general positions so that the ratios involved are defined; `(B;C) denotes the oriented
length of the segment [B;C].

(a) Menelaus’ theorem: If any line L intersects the side AiAi+1 of P in the point Mi,
then

5Y
i=1

`(ViMi)

`(Vi+1Mi)
= 1:

(b) Ceva’s theorem: If P is any point and Ci is the intersection point of the line PVi with
the line Vi+2Vi+3, then

5Y
i=1

`(Vi+2Ci)

`(Vi+3Ci)
= �1.

(c) Selftransversality: If Yi is the intersection point of the lines ViVi+1 and Vi+2Vi+4,
then

5Y
i=1

`(ViYi)

`(Vi+1Yi)
= 1.

In terms of Table 1 (the meaning of which is explained below), (a) corresponds to entry (5),
(b) to entry (3), and (c) to entry (1). Moreover, (c) can be interpreted also as illustrating entry
(2), according to which

5Y
i=1

`(ViYi+3)

`(Vi+2Yi+3)
= 1.
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the line segments [A;B] and [C;D], with a + or � sign to indicate whether these
line segments (or vectors) have the same, or directly opposite directions.

The idea of our theorem is simple. We start from an n-acron P and a (fixed)
q-flat Q in A

d . Assume these and all other objects under discussion are in general
position. For each r-diagonal Ri of P of a chosen type we specify, in a prescribed
manner, an s-diagonalSi where s = d�q�r�1. Then the transversal aff(Q[Ri),
specified by the anchor Q and the diagonal Ri, meets Si in a single point. This
point, together with vertices of P , is used to specify two s-dimensional simplices.
The theorem asserts that (under certain specified conditions), the circular product
of the ratios of the s-dimensional contents of these simplices, has a constant value
+1 or �1. The precise statement of the theorem is given in the next section.

The traditional version of Ceva’s theorem for a triangle (actually a 3-acron)
corresponds to the case d = 2; n = 3; q = 0; r = 0; s = 1. Here the anchor Q is
a fixed point, Ri runs through the vertices of P , and for each Ri, Si is the 1-side
of P which does not contain Ri. The theorem is concerned with the ratios of the
lengths of line segments defined by vertices of P , and the intersection points of the
transversals defined byQ andRi with the sidesSi. Menelaus’ theorem corresponds
to d = 2, n = 3, q = 1, r = �1, s = 1 so the anchor Q is a fixed line and each Ri

is the empty set. The theorem concerns the ratios of the lengths of line segments
defined by the intersection points of Q with the sides Si of P . For the pentagons in
Figure 1(a) and (b), the parameters take the same values except that n = 5. Figure
1(c) shows the case d = 2, n = 5, q = �1, r = s = 1, so the anchor Q is the
empty set. The theorem makes an assertion about the ratios of the lengths of the
line segments defined by vertices of P and the intersection points Yi of diagonals
Ri = aff(Vi+2; Vi+4) with sides Si = aff(Vi; Vi+1) of P .

3. Formulation of the Result

Let P = [V1; : : : ; Vn] be a polyacron in A
d , where 1 � d � n � 1. Let q; r; s be

integers such that �1 � q � d� 1;�1 � r � d� 1; 1 � s � minfd; n � r � 2g
and q + r + s + 1 = d. Further let A = (a0; : : : ; as) and B = (b0; : : : ; br) be
sequences of integers such that all the elements of A [ B are distinct modulo n.
Let Si denote the s-diagonal aff(Vi+a0 , Vi+a1 ; : : : ; Vi+as) and Ri the r-diagonal
aff(Vi+b0 , Vi+b1 ; : : : ; Vi+br ). Let Q be a q-flat such that, for each i = 1; : : : ; n; the
(q+r+1)-flat aff(Q[Ri) spanned byQ andRi meets the s-diagonalSi in a single
point Yi which (by the assumed general position of the vertices) must be distinct
from Vi+a0 , Vi+a1 ; : : : ; Vi+as: (If q = �1 or r = �1 then the corresponding flat
Q or R is interpreted as being empty. Note that q = r = �1 is excluded by the
assumptions on the parameters.) Now define

�(P ;A;B;Q) =

nY
i=1

�
Vi+a0Vi+a1 : : : Vi+as�1Yi

Vi+a1Vi+a2 : : : Vi+asYi

�
: (1)
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This is the circular product of ratios mentioned at the end of the previous section.
Conditions under which the product (1) takes a fixed value +1 or �1 are given by
the following result:

THE CMS THEOREM. Given an n-acron P in A
d , sequences of integers A;B,

and a flat Q as specified above, then �(P ;A;B;Q) is a constant independent of P
if and only if there exists an integer k such that, modulo n, the sequence

(a0 + k; a1 + k; : : : ; as�1 + k; b0 + k; b1 + k; : : : ; br + k)

is a permutation � of the sequence

(a1; a2; : : : ; as; b0; b1; : : : ; br):

The value of the constant is given by �(P ;A;B;Q) = (e(�))n, where e(�) = 1 if
� is an even permutation and e(�) = �1 if � is an odd permutation.

If s = 1, the right side of (1) becomes the product of n quotients of lengths of
line segments; hence our theorem is seen to include, as special cases, both Ceva’s
and Menelaus’ theorems for n-gons, as well as the selftransversality result from
[12].

Before giving a proof of the theorem we shall give a geometric interpreta-
tion of the condition stated in the theorem. To do this we use what we shall
call CMS-diagrams. Start with a regular plane n-gon N , number the vertices of
N consecutively in a positive direction, and mark those that correspond to the
integers ai and bi. The vertices corresponding to a0 and as are marked in such
a way that they can be distinguished from those corresponding to a1; : : : ; as�1

and b0; : : : ; br. See Figure 2(a) for an example with n = 9, A = (0; 1; 2; 3) and
B = (4; 6; 8); the markings are explained in the caption to the figure. The condition
of the theorem holds if and only if the two sets of vertices, corresponding to the
integers a0; : : : ; as�1; b0; : : : ; br and to a1; : : : ; as; b0; : : : ; br are directly congruent
(as unmarked sets); that is, one can be made to coincide with the other by a suitable
rotation about the centre of the polygon N . For the example of Figure 2, part (b)
shows the two sets of vertices, and it will be observed that the second set can be
obtained from the first by a rotation through angle 4�=9. Hence, in this case, the
condition of the theorem holds.

Although the theorem holds for all values of the parameters specified at the
beginning of this section (with appropriate choices of A and B), if s = d the
assertion becomes trivial in the following sense: the terms in the numerator and
denominator of (1) are identical (apart from a possible permutation of the vertices
defining the simplices), so complete cancellation can be carried out, yielding 1
or �1.



184 BRANKO GRÜNBAUM AND G. C. SHEPHARD

Figure 2. (a) A CMS-diagram for n = 9, with A = (0; 1; 2; 3) and B = (4; 6; 8). Points
corresponding to a0, a3 are marked �, those corresponding to a1; a2 and to b0; b1; b2 are
marked . Here s = 3 and r = 2. Because the two sets of points marked in (b) are directly
congruent, the sets A and B satisfy the condition of the CMS theorem.

This is illustrated in Figure 4. In (a) we have n = 5, d = 2, q = �1, r = 0,
s = 2, A = (1; 2; 4) and B = (3). Then the product (1) involves quotients of the
areas of triangles. Explicitly this is�

V1V2V3

V2V4V3

�
�

�
V2V3V4

V3V5V4

�
�

�
V3V4V5

V4V1V5

�
�

�
V4V5V1

V5V2V1

�
�

�
V5V1V2

V1V3V2

�
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Figure 3. By projection alongQ, the theorem of Menelaus for dimension d = 2, n = 5 reduces
to the theorem of Ceva for dimension d0 = 1:

5Y
i=1

�
ViMi

Vi+1Mi

�
=

5Y
i=1

�
V 0

iQ
0

V 0

i+1Q
0

�
= 1;

and the latter is trivial in the sense described in Section 3.

and the cancellations become evident. On the other hand, if all the parameters (as
well as A and B) take the same values, except that d = 3 and q = 0, we arrive at
the situation shown in Figure 4(b). Here the anchor Q is a fixed point and the line
aff(Q;V3) meets the plane aff(V1; V2; V4) in Y5. The other points Yi are determined
by cyclically changing all the subscripts (mod 5). The theorem makes an assertion
about the product �(P ;A;B;Q) of 5 terms of the form

[(Vi+1Vi+2Yi + 3)=(Vi+2Vi+4Yi+3)] (i = 0; 1; 2; 3; 4)

and clearly this result is far from trivial. In a similar way we obtain a non-trivial
result (not illustrated) with the same values of the parameters (as well as A and B)
except that d = 4; q = 1. Another trivial example, corresponding to d = 2; q = 0,
r = �1, s = 2, A = (1; 2; 3) and B = ;, is illustrated in Figure 4(c).

In Table I we list all the non-trivial assertions of the theorem in the case
n = 5. For each of the possible values of the parameters and of the dimension
(in this case d = 2; 3 or 4) we can readily determine the permissible sets A

and B using the CMS-diagrams. It will be seen that, in the case of pentacrons,
the CMS theorem makes 34 non-trivial assertions, many of which appear to be
new.
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Table I. The essentially different possibilities of the parameters d; q; r; s and sets A and B for which
the CMS theorem is valid and non-trivial when n = 5. Since n is odd we have e(�) = �(P ;A;B;Q).

List d q r s A B e(�) Remarks
number = �(P ;A;B;Q)

1 2 �1 1 1 (1, 2) (3, 5) 1 Figue 1(c)
2 2 �1 1 1 (1, 3) (4, 5) 1 Figure 1(c)
3 2 0 0 1 (1, 2) (4) �1 Ceva’s theorem

Figure 1(b)
4 2 0 0 1 (1, 3) (2) �1
5 2 1 �1 1 (1, 2) Ø 1 Menelaus’ theorem

Figures 1(a), 3
6 2 1 �1 1 (1, 3) Ø 1

7 3 �1 1 2 (1, 2, 3) (4, 5) 1
8 3 �1 1 2 (1, 3, 2) (4, 5) 1
9 3 �1 1 2 (1, 2, 4) (3, 5) 1

10 3 �1 1 2 (1, 4, 2) (3, 5) 1
11 3 �1 2 1 (1, 2) (3, 4, 5) �1
12 3 �1 2 1 (1, 3) (2, 4, 5) �1
13 3 0 0 2 (1, 2, 4) (3) �1 Figure 4(b)
14 3 0 0 2 (1, 3, 2) (5) �1
15 3 0 1 1 (1, 2) (3, 5) 1
16 3 0 1 1 (1, 3) (4, 5) 1
17 3 1 �1 2 (1, 2, 3) Ø 1
18 3 1 �1 2 (1, 4, 2) Ø 1
19 3 1 0 1 (1, 2) (4) �1
20 3 1 0 1 (1, 3) (2) �1
21 3 2 �1 1 (1, 2) Ø 1
22 3 2 �1 1 (1, 3) Ø 1

23 4 0 0 3 (1, 2, 3, 4) (5) �1
24 4 0 0 3 (1, 2, 4, 3) (5) �1
25 4 0 0 3 (1, 2, 4, 5) (3) �1
26 4 0 1 2 (1, 2, 3) (4, 5) 1
27 4 0 1 2 (1, 3, 2) (4, 5) 1
28 4 0 1 2 (1, 2, 4) (4, 5) 1
29 4 0 1 2 (1, 4, 2) (3, 5) 1
30 4 0 2 1 (1, 2) (4) �1
31 4 0 2 1 (1, 3) (2) 1
32 4 1 �1 3 (1, 2, 3, 4) Ø 1
33 4 1 �1 3 (1, 3, 5, 2) Ø 1
34 4 1 0 2 (1, 2, 4) (3) �1
35 4 1 0 2 (1, 3, 2) (5) �1
36 4 1 1 1 (1, 2) (3, 5) 1
37 4 1 1 1 (1, 3) (4, 5) 1
38 4 2 �1 2 (1, 2, 3) Ø 1
39 4 2 �1 2 (1, 4, 2) Ø 1
40 4 2 0 1 (1, 2) (4) �1
41 4 2 0 1 (1, 3) (2) �1
42 4 3 �1 1 (1, 2) Ø 1
43 4 3 �1 1 (1, 3) Ø 1
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Figure 4. (a) The case n = 5; d = 2; q = �1; r = 0; s = 2, A = (1; 2; 4) and B = (3). One
of the ratios used in the compilation of �(P ;A;B;Q) is [V1V2V3=V2V4V3] which is the ratio
of the areas of the two shaded triangles. The other four ratios are obtained by cyclic changes of
the subscripts (mod 5). Since the areas of the triangles cancel, were refer to this case as trivial.
(b) A non-trivial result in three dimensions (entry (13) in Table 1) in which the parameters (as
well as A and B) take the same values as in (a) except that q = 1; d = 3. The line aff(Q; V3)
meets the plane aff(V1; V2; V4) in the point Y5. One of the ratios used in the compilation of
�(P ;A;B;Q) is [V1V2Y5=V2V4Y5] which is the ratio of the areas of the two shaded triangles.
The other four factors are obtained by cyclic changes of the subscripts (mod 5). In this case
there is no trivial cancellation. (c) If this figure is interpreted in d = 2 dimensions, with Q as
a fixed point, the result is trivial.

4. Proof of the Theorem

Choose q + 1 points X0; : : : ;Xq in Q in such a way that the n + q + 1 points
V1; : : : ; Vn;X0; : : : ;Xq are in general position. Let the position vectors of points
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in A
d be represented by the corresponding lower case letters, so that a point Ui has

position vector ui with components (ui1, ui2; : : : ; uid). In terms of determinants,
the condition for d+ 1 points U0, U1; : : : ; Ud to lie in a hyperplane is

D(u0; : : : ; ud) = det

2
66666666664

u01 u11 � � ud;1

u01 u12 � � ud;2

� � � � �

� � � � �

u0d u1d � � ud;d

1 1 1 1 1

3
77777777775
= 0:

For i = 1; : : : ; n let Hi be the hyperplane spanned by the (s� 1) + (r + 1) +
(q+ 1) = d points Vi+a1 ; : : : ; Vi+as�1 ; Vi+b0 ; : : : ; Vi+br ;X0; : : : ;Xq, and suppose
Hi meets the 1-diagonal aff(Vi+a0Vi+as) in the point Wi. Because of the assumed
generality of position of the points, Wi will be uniquely determined and distinct
from Vi+a0 and Vi+as . Then wi = (1 � �i)vi+a0 + �ivi+as for some value of �i,
and

�i

�i � 1
=

�
Vi+a0Wi

Vi+asWi

�

=

"
Vi+a0Vi+a1 � � � Vi+as�1Yi

Vi+asVi+a1 � � � Vi+as�1Yi

#

= (�1)s�1
�
Vi+a0 � � � Vi+as�1Yi

Vi+a1 � � � Vi+asYi

�
: (2)

The second equality holds since the simplices in the numerator and denominator of
the last expression have the same base [Vi+a1 ; : : : ; Vi+as�1 ; Yi] and so their signed
volumes are proportional to their heights, namely the signed lengths of the line
segments [Vi+a0 ;Wi] and [Vi+as ;Wi]. This is the extension of the ‘area principle’
from [12] mentioned in the Introduction; it could be called the ‘volume principle’.
(In the case s = 1, the second equality of (2) is an identity since Yi = Wi.)

Now, as Wi lies in the hyperplane Hi,

0 = D(wi; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

= D((1� �i)vi+a0 + �ivi+as ; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

= (1� �i)D(vi+a0 + vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

+�iD(vi+as ; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

and solving for �i=(�i � 1) we obtain

�i

�i � 1
=

D(vi+a0 ; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

D(vi+as ; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)
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= (�1)s�1D(vi+a0 ; vi+a1 ; : : : ; vi+as�1 ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)

D(vi+a1 ; : : : ; vi+as�1 ; vi+as ; vi+b0 ; : : : ; vi+br ; x0; : : : ; xq)
: (3)

Taking the product from i = 1 to i = n, we see that the determinants in the
numerator are, up to a permutation of columns, exactly those in the denominator if
and only if condition given in the statement of the theorem holds. Moreover, this
permutation of columns introduces n times the factor e(�) into the value of the
determinant. In all, we have, from (2) and (3),

�(P ;A;B;Q) =

nY
i=1

�
vi+a0 � � � vi+as�1Yi

vi+a1 � � � vi+asYi

�

=

nY
i=1

(�1)s�1�i

�i � 1
= (e(�))n

as claimed.

5. Remarks and Examples

(i) We note that the proof of the CMS theorem in Section 4 could be amplified
by showing that the condition of the theorem is not only necessary for the algebraic
cancellation of the ratios involved in the product, but that even numerically such
cancellation can occur for all polyacrons only if the condition is fulfilled. This is an
easy consequence of the fact that if a polynomial (in any given number of variables)
has the value zero for all choices of real values of its variables, then it must be
identically zero (that is, all its coefficients must equal 0). Of course, it is possible
for the product in the theorem to have value 1 (or �1) for a particular choice of the
parameters and points even if the condition is not satisfied.

(ii) The parity of the permutation �, which appears in the formulation of our
theorem, obviously does not depend on the number of elements in B as long as
B 6= ;. As a consequence, the cases q > 0 of the theorem (which can be interpreted
as generalizations of the theorem of Menelaus) are simple consequences of the cases
in which q = 0 (which correspond to Ceva’s theorem). More geometrically, the
assertion of the theorem for a given polyacronP with any given d and q > 0 can be
reduced to the one for a polyacron P 0 with d0 = d� q and q0 = 0 by projecting the
polyacron along Q onto a d0-dimensional flat complementary to Q. An example is
shown in Figure 3. Clearly the statement of Menelaus’ theorem for the pentacron
P follows immediately from that for the projected pentacron P 0, and as the latter
is trivial, we arrive at a simple and elementary proof of Menelaus’ theorem when
n = 5 (and, by obvious extension, to all n � 3).

(iii) Since it is difficult to illustrate the theorem by intelligible diagrams if
d � 3, we shall describe some of the cases where d = 3 and n = 5. Entry (12)
of Table I shows that if Wi is the intersection of the line aff(Vi+1; Vi+3) with the
plane aff(Vi+2Vi+4; Vi), then the product (for 1 � i � 5) of the ratios of directed
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Figure 5. The simplest selftransversality result. Here d = 2; n = 4, q = �1, r = 1, s = 1,
A = (1; 2) and B = (3; 4). In the notation of the diagram,h

V1Y1
V2Y1

i
�
h
V2Y2
V3Y2

i
�
h
V3Y3
V4Y3

i
�
h
V4Y4
V1Y4

i
= 1:

It is remarkable that such a simple result has not previously appeared in the literature, except,
so far as we are aware, in Carnot’s book [4] published in 1803.

lengths of [Vi+1;Wi] and [Vi+3;Wi] equals�1. On the other hand, entry (7) shows
that if Wi = aff(Vi+1; Vi+2; Vi+3)\ aff(Vi+4; Vi) then the product of the five ratios
of oriented areas of the triangles Vi+1Vi+2Wi and Vi+2Vi+3Wi is 1. Entry (13)
corresponds to the case in which a fixed point Q is given, and the intersection of
the line aff(QVi+3) with the 2-diagonal aff(Vi+1; Vi+2; Vi+4) determines a point
Wi. Then �(P ;A;B;Q) is the product of the ratios of the areas of the oriented
triangles Vi+1Vi+2Wi and Vi+2Vi+4Wi, and is equal to �1.

(iv) In some contexts it is not necessary to assume, in the definition of a
polyacron, that its vertices are in general position. Instead, it may be sufficient
to require the affine independence only of sets of points (of certain specified sizes)
that occur in the statement of a theorem or its proof. It seemed unnecessary to
burden the formulation of our theorem with details of these possibilities.

(v) It is rather remarkable that the ‘selftransversality’ results, corresponding to
Q = ; in the CMS theorem, seem not to have been mentioned in the literature –
even in the first non-trivial case d = 2, n = 4, A = (1; 2), B = (3; 4), see Figure
5, or in the next two cases (for d = 2; n = 5) illustrated in Figure 1(c). The only
exception to this of which we are aware is that the first-mentioned result appears
(in different notation) in [4, p. 279, Théorème VI].
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(vi) The selftransversality theorem of this paper was originally suggested by
empirical results for polyacrons (for smalln and d) obtained using a Macintosh IIcx
with Mathematica c software. The proofs of these results suggested the general
form of the theorem stated above. It seems likely that other theorems about plane
n-gons admit analogous generalizations to polyacrons.

(vii) Even if the sets A and B fail to satisfy the condition of the theorem, it
may be possible to determine the value of the product �(P ;A;B;Q) in terms of
other circular products. For example, using the ‘volume principle’ it is possible
to prove results of the following kind: Given any n-acron P , with n � 5 and
five integers �; �; ; �; � distinct modulo n, then, with A = (�; �; ; �), B = (�),
A�

= (�; �; ), B�
= (�; �), A��

= (�; �) and B��
= (; �; �), we have

�(P ;A;B; ;) = (�1)n�(P ;A�; B�; ;) = �(P ;A��; B��; ;):

(viii) The ‘volume principle’ is not new. Without a special name, it has probably
been used by many people, and in many contexts. For example, in [5, p. 131], it
is used to prove a theorem on the sum of the ratios of lengths in which a point
partitions transversals from the vertices of a tetrahedron to the opposite faces.
However, it seems that the method has not been previously applied to the topic of
this note, nor has its wider utility been noted.
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12. Grünbaum B. and Shephard, G. C.: The area principle, Math. Magazine (to appear).
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