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COMMON TRANSVERSALS FOR FAMILIES OF SETSf

B. GRUNBAUMJ.

1.' Let Jf denote a family of subsets of a Euclidean or protective
space. X will be said to have property $~{k), where k is a natural number,
[resp. property $"] if every k [resp. all] members of Jf have a common
transversal (i.e., may be intersected by a suitable straight line).

In [26] and [23] the following theorem was proved (among other
related results):

For a family of parallel segments in the plane &~(3) implies ST.

The determination of other sets of conditions under which $~ (k), for
some fixed k, implies ST, has been the object of numerous investigations.
(The following list is believed to be complete: [3, 6-16, 19-21, 23-29].)

In the present note we shall prove additional theorems of this nature,
generalizing some of the previously established results. Our main tool
will be Helly's [18] general theorem on intersections of "cells". Some
of the results of this note were announced in [9].

In §2 we discuss some sets of conditions, sufficient for the existence of
common transversals for families of sets in n-dimensional Euclidean
space En. As an application, we obtain a sharper version of the result
in [13] dealing with common transversals of "thin families" of spheres
in En. The case n = 3 is investigated in more detail in §3. The two-
dimensional case is treated in §4; the main result obtained generalizes
some of the theorems of [21] and [24]. As corollaries, results similar to
some of [16] are obtained.

2. A compact subset C of En will be called a cell (in E11) if C is homo-
topic (in itself) to a point. A formulation of Helly's theorem [18] on
intersections of cells, suitable for the present purposes, is:

/ / %> is a family of cells in En such that the intersection of any 2, 3, ..., n
members of % is a cell and such that the intersection of any n-\-l members of ft
is not empty, then the intersection of all the members of *& is not empty.

(The above definition of " cell" is more restrictive than Helly's original
one [18]; a slightly weaker version of Helly's theorem is given in [1].)

In order to apply Helly's theorem to problems dealing with common
transversals, we need to introduce some concepts and notations.
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Office of Scientific Research of the Air Research and Development Command, under
contract No. AF49(638)-253. Reproduction in whole or in part is permitted for any
purpose of the United States Government.
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A family Jf = {Ki} 1 < i < m} of subsets of En shall be called separated
by parallel hyperplanes (in short, separated) if there exists a family
3f = {Hi} 0 < i ^ m] of parallel hyperplanes £T̂  such that Kt is contained
in the open part of En bounded by Hi_x and Hit for 1 < i < m , while ^
is between i / ^ and ^ + i , for 1 < i <m— 1.

If JK^ C JBJW belongs to a family Jf of separated sets, a subset (7̂  of a
2n—2 dimensional Euclidean space E2n~2 may be used to represent the
set of straight lines intersecting Kt, HQ and Hm, in the following way.
Each such intersecting line L is completely determined by the two points
xo = Lr\H0 and xm= Lr\ Hm, and may therefore be uniquely represented
by the point {x0, xm) of E2n~2. C{ is the set of all the points corresponding
in this way to such intersecting lines.

With this terminology we have

THEOEEM 1. If Jf is a separated family of compact, convex subsets of
En such that the intersection of any 3, 4, ..., 2n—2 of the sets Ci

<=-E2n~2

is a cell, then &~(2n—l) implies ST.

Proof. The assertion of the theorem would follow at once from
Helly's theorem applied to the sets Ci <= E2n~2 if the sets Ĉ  were cells in
jj2n-2 (which they are not), and if we knew that Ci r\ Cj} for i ^j, are cells.
Now, this property of C^o Cj follows immediately from a theorem of
Brunn [2] according to which the set {#0; {x0, xm) e Ĉ  r\ Gi c= E2n~2}^H0

is convex. On the other hand, without changing any of the other argu-
ments, instead of the sets Ci we may consider the cells C^ c Cis obtained
by taking only those points of Ci for which the corresponding lines L c En

form an angle > a with HQ, for some a small enough to insure that
C^rsC;* = Cir^Cj for all i ^j. This ends the proof of Theorem 1.

If H is a hyperplane parallel to Ho and Hm and situated between them,
and if K<^H is a convex set, then the corresponding set C is convex.
Therefore we have

COROLLAKY 1. If JT is a family of compact, convex sets in En, whose
members are contained in distinct parallel hyperplanes, then 3T(2n—\)
implies ST'.

Remark 1. Using standard arguments it is easily seen that in
Theorem 1 (as well as in other results of this paper) either the assumption
that X is finite, or the assumption that each Kt is compact, but not both,
may be omitted. Obviously, the convexity of the sets Ki is necessary
(for n>2).

Remark 2. Corollary 1, which generalizes the theorem of Santalo [26]
cited in §1, may be proved directly from Helly's theorem on intersections
of convex sets [17] (in analogy to the proof of Santalo's theorem in 23]).
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Remark 3. Corollary 1 may be proved also under the weaker assump-
tion that not all the parallel hyperplanes, containing the members of JT,
coincide. Well-known examples ([15], [19], [24]) of families in E2 for
which y~{k) does not imply $~{k-\-\) show that this weaker condition may
not be dropped.

Remark 4. The necessity of assuming (in Corollary 1 as well as in
Theorem 1) &~(2n— 1) instead of, e.g., 3~(n-\-\) follows at once from the
following example in E3. Let Ki} 1 < i < 5, be the segments with end-
points Ai and Bit where Ax = (0, 0, 0), A2 = (3, —3, 1), As= (2, 0, 2),
A, = (1, 3, 3), A5 = (0, 0, 4), B1 = (6, 0, 0), B2 = (3, 1, 1), B3 = (0, 2, 2),
J54= (—3, 3, 3), B5 = (0, 6, 4). As easily verified, this family has
property f(4) but not &~(5).

(The necessity of the assumption (in Theorem 1) that Cir\Cj, etc.,
be cells will be discussed later (Remarks 6 and 7, §3).)

For another corollary of Theorem 1 we need the concept of a "thin "
family of sets. A family J/f = {a^+A l̂T} of sets similar to a compact,
convex set K<^En which has the origin as centre of symmetry, is called
p-thin, for a real p > 1, if (x^p^K)^ (x^+p^K) = 0 for i =£j.

COROLLARY 2. For 2-thin families of (closed, solid) spheres in En,
—l) implies F.

Proof. It is not difficult to see that a 2-thin family SP — {#J of
spheres which has property «̂ ~(3) if n = 2 or ^"(4) if n ^ 3, is separated
by parallel hyperplanes. Indeed, the separating hyperplanes may be
taken orthogonal to the line determined by the centres of any two members
of Sf whose convex hull does not meet any other member of Sf. [The
existence of such a pair follows easily from 2-thinness and ^(3).] In
order to apply Theorem 1 it is therefore necessary only to show that the
intersection of any 3, 4, ..., 2n—2 of the sets Cit corresponding to trans-
versals of Si} is a cell. But this follows immediately from the reasoning
given in the "Nachtrag" to [14]. This ends the proof of Corollary 2.

Remark 5. With 17" (n2) assumed instead of &~(2n— 1), Corollary 2
is due to Hadwiger [13], [14]. The case n = 2 of Corollary 2 appears
in [16].

3. A family Jf of convex sets in En shall be called ^-simple (k a
natural number) if, whenever Lo and Lx are straight lines both of which
intersect any k members Kx, ..., Kk of Jf, there exists a continuous family
L(t), 0 < £ < l , of straight lines such that L(t) intersects Ki for all t,
0 < £ < l , and all i, l < i < & , while L(0) = L0 and L(l) = Lx. (For
families Jf separated by parallel hyperplanes, ^-simplicity is equivalent
to the condition that the intersection of any k of the sets Ĉ  <=z E2n~2 be
connected.)
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By using the arguments in [2] it is easily seen that any family of com-
pact, convex sets separated by parallel hyperplanes is 3-simple. On the
other hand, such families do not have to be 4-simple.

In the case n = 3, Theorem 1 may be given the simpler form

THEOREM 2. If Jf is a 4-simple separated family of compact, convex
subsets of E3, then <̂ ~(5) implies 3~.

Proof. In view of Theorem 1, we have only to show that for any
four members K1} K2, Kz, K^ of Jf the intersections Cxrs C2r\ (73 and
Cxr\C2r\Czr\ C4 are cells. But this, by the above remark on 3-simplicity,
is an immediate consequence of the following lemma.

LEMMA 1. Let Jf = {Ki} 1 ̂ .i ^.m} be a family of compact, convex
subsets of Ez, separated by parallel planes Hi} 0 ̂ i ^.m. Let A be the
subset of Ho consisting of points through which pass straight lines intersecting
all the members ofjf. If A is connected, it is simply connected.

Proof. Assume that A is not simply connected, and let a; be a point
of a bounded component A * of the complement of A in Ho. Let 2^ denote
the cone with vertex x generated by Kif and let Di — Bir\ Hm. Obviously,

Di is convex, and C\ Di==0 because x $A. Therefore, by Helly's theorem

on convex sets [17], there exist p, q, r with l < # < g < r < m , such that
Dvr\DqniDr = 0. On the other hand, for any i, j we have Dir\Di^0
since otherwise there would exist a plane passing through x and strictly
separating Ki from Ki} in contradiction to our assumption that A* is a
bounded component of the complement of A. Thus, the complement of
Dp\jDQv Dr in Hm has a bounded component D*; let E be the ellipse of
maximal area inscribed in D*. We denote by Pq resp. Pr the plane
passing through x and separating E from Bq resp. Br, and by F the inter-
section of Ho with those closed half-spaces determined by Pq and Pr

which do not contain E. Then obviously xzF, F is unbounded and
connected, and Fr>iA — 0 in contradiction to the assumption that ,4*
is a bounded component of the complement of A. This ends the proof
of the lemma, and therefore proves Theorem 2.

Remark 6. The condition of 4-simplicity in Theorem 2 (and therefore
also some condition on the intersections of the sets Ĉ  in Theorem 1) is
necessary, as is shown by the following example. Let Ki} i = 1, 2, 5, 6,
be segments with end-points Ai} Bi} where Ax = (0, 0, 0), A2 = (1, 0, 0),
Ah = (4, 0, 0), A, = (6, 0, 0), Bx = (0, 0, 6), B2 = (1, 1, 5), B5 = (5, 5, 1),
5 6 = (6, 6, 0), in a system of coordinates (xv x2, x3) of E3. It is obvious
that precisely two straight lines intersect all these four sets, one of them
LA, containing the points Ai} the other, LB, the points B^ Let Hz resp. 2f4
denote the plane xx = 2 respZi = 3, and let Li,i=l, 2, 5, 6, denote a
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straight line intersecting, in interior points of the segments, the three
members of {K1} K2, K5, K6} different from Kt. Then Lir\Ki = 0.
We denote by K3 the convex hull of the five points H3r>> LA = (2, 0, 0)
and H3r\Li,i=l,2, 5, 6, and by Z 4 the convex hull of H± r\LB= (3, 3, 3)
and H^rs L{, i = 1, 2, 5, 6. Then the family {Kif 1 < i < 6} is separated
by parallel hyperplanes (indeed, except for K5, the sets are contained in
parallel hyperplanes) and has property «̂ ~(5) but does not have .^"(6).

Remark 7. It is possible that Theorem 1 holds with the condition
" X is ^-simple, for k — 4, ..., 2n—2" imposed instead of the conditions
on the intersections of the sets C^

4. In the case of the plane, more complete results on common trans-
versals may be obtained, mainly because of the possibility of applying the
projective duality and because of the following simpler form of Helly's
theorem valid for n = 2 ([18], [22]):

/ / X is any family of cells (i.e. compact, simply connected sets) in E2

such that the intersection of any two members ofJf is connected, and the inter-
section of any three members is non-empty, then the intersection of all the
members of Jf is not empty.

Properties 0 like boundedness, connectedness, etc., of compact sub-
sets of the projective plane TT will in the sequel be understood in the follow-
ing sense:

The set A <= TT has property 0 if there exists a homeomorphism </> of TT
onto another projective plane TT*, and a straight line L^TT*, such that
Lr\<f>(A) = & and such that <j>(A) has property 0 in the affine plane
obtained from TT* by taking L as the "line at infinity".

The following properties of subsets of the projective plane are easy
consequences of their well-known Euclidean counterparts:

(i) If the intersection of two connected sets [cells] is connected, their
union is connected [their union and intersection are cells].

(ii) If the intersection of three connected sets [cells] is not empty, and
if the intersection of any two of them is connected, then their union is
connected [their union and intersection are cells].

We may formulate Helly's theorem for the projective plane as follows:

LEMMA 2f. If^is a family of cells in the projective plane TT, such that
the intersection of any two members of *& is connected and the intersection of
any three members is non-empty, then the intersection of all the members of 9o
is not empty.

tAdded in proof. Dr. J. Molnar informed the author that Lemma 2 of the present
paper is a corollary of his paper "A ketdimenzi6s topol6gikus Helly-tetelrol" ("On Helly's
two-dimensional topological theorem"), Matematikai Lapok, 8 (1957), 108-114.
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Proof. We prove the Lemma first in the case ^ = {CQ, Clt C2, C3}.
Since C = C J V C2v^ C3 is, by (ii), a cell and since all the properties con-
sidered are invariant with respect to homeomorphisms of TT, we may
assume that C is contained (and therefore bounded) in an affine plane of TT.
Now, {0* = Cr\CQ, C1} C%, C3} is a family satisfying the conditions of
Helly's theorem for the affine (Euclidean) plane. Indeed, each of the
four sets is a cell (for C* this follows from (i), since C and Co are cells and
0* is easily seen to be connected) and, as C* r\ Ci = Co r» Ci and
C* r>lCiniCj = Co /̂> Ĉ  /̂> Cj, the conditions on the intersections of two
or three sets are also satisfied. Therefore

C*r\ Cxr^ C2n C3 = Con C1r*C2^C3^ 0.

For arbitrary finite families ft = {Cif 0 ^.i ^.n} the Lemma may now
easily be established by induction, using the above special case and the
inductive assumption on the family {C^* = Cor\ Ct; l < i < ? i } . The
general (infinite) case then follows by compactness. This ends the proof
of Lemma 2.

Following the accepted terminology, we shall call a compact subset
of a projective space -nn convex if its intersection with any straight line is
either empty, or a point, or a segment (but not the whole line) [4], [5].
We shall say that a compact subset of irn is strongly bounded if there exists
a hyperplane TT11_1 disjoint from it. It is well known that compact,
convex sets are strongly bounded.

Remark 8. By defining appropriately the notion of cell in -nn, Helly's
theorem may be established also for families of cells in 7rn, n ^ 2. On
the other hand, Helly's theorem on convex sets may be formulated as
follows: Any family Jf of compact convex sets in nn, such that the inter-
section of any two members of Jf" is convex and the intersection of any
w+1 of them non-empty, has a non-empty intersection.

If A is a compact, strongly bounded subset of the projective plane TT,
a set K will be called a convex hull of A UK is convex, contains A and is
minimal with respect to these properties. A set A may have, in general,
more than one convex hull; but it is easily seen that if A is connected
then the convex hull of A is unique.

In this terminology we have

THEOREM 3. Let stf = {-4J be a family of compact, connected, strongly-
bounded subsets of the projective plane TT, such that for some Aoes/ the
following conditions are satisfied:

(a) The convex hull of Ao is disjoint from the convex hull of any other
member of stf;

(b) For any Ai} A^z-stf, i ^j, a connected set of points in the projective
plane dual to TT corresponds to the set of all lines intersecting simultaneously
AQ, Ai and Aj;
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(c) For any At, Ai} Akzs0 there exists a straight line intersecting
Ao, Ait Af and Ak.

Then the family $2 has property ST.

Proof. In the plane dual to -n, let Ci} for i ^ 0, denote the set of all
points corresponding to straight lines in IT which intersect Ao and Ai

Then, as a consequence of (a), it follows that Ci is a cell (see [21],
Lemma 2.2). Since (b) insures that Ctr\ Gi is connected, and (c) that
Cir\Cjr\ Ck ^ 0 , it results from Lemma 2 that C\Ci=£0, i.e. all the

t

members of £0 have a common transversal. This ends the proof of
Theorem 3.

Remark 9. Theorem 3 obviously applies also to families of subsets
of E2. It generalizes Theorem 2 of [21] and the corresponding result
of [24], the main difference being that in [21] and [24] conditions (a), (b),
(c) (or conditions equivalent to them) are imposed on any pair, triple,
resp. quadruple of members of srf.

Remark 10. Using the case n = 4 of Theorem 1 of [6] (or the corres-
ponding result of §4 of [21], or Formula (7) of [24]), a somewhat generalized
formulation of Theorem 1 of [21] (and of the related result of [24]) follows
easily from the above Theorem 3.

Remark 11. It is easy to see that none of the conditions (a), (b), (c)
of Theorem 3 may be dropped.

Applying Theorem 3 we shall now prove

COBOLLABY 3. For any -\/2-thin family <€ of congruent circles in the
plane, ^"(3) implies 2T.

Proof. The condition of -\/2-thinness implies, because of ^"(3), that
any triangle whose vertices are centres of circles in <̂ , has an obtuse angle.
By considering the (essentially only 3) different possible configurations of
four-membered subfamilies of ̂  it is easily seen that ^ has property .^"(4).
Since the condition (&) of Theorem 3, is obviously satisfied (with any
member of ^ as AQ), this establishes Corollary 3.

Remark 12. As is shown by the example of four circles, centred at
the vertices of a unit square and having radius £ -y/2, it is impossible to
replace in Corollary 3 the condition of V^-thinness by that of p-thinness,
for any p < -\/2. On the other hand, Corollary 3 fails for -\/2-thin families
of incongruent circles. This is shown by the four circles with centres
(9, 0), (0, 2), (0, 8), (—9, 0) and radii 5, 1, 3, 5, respectively.

If K is a compact, convex set, a family {x^K} of translates of K shall

be called dispersed if {x^K) r\ {^{x^x^+K^j = 0 for i ^j. Obviously,
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if K has the origin as centre of symmetry, the notion of a dispersed family
of translates of K coincides with that of a 2-thin family (see §2).

We have the following

COROLLARY 4. / / X = {x^K} is a dispersed family of translates of
a compact, convex subset K of E2, then ST{$) implies ST.

Proof. Let Z* = £ (#+( -#) ) , and let Jf*=fo+Z*}. Then it is
easily seen that X* is dispersed (i.e. 2-thin), and that ^"(3), resp^", hold
for X and Jf* simultaneously. Without loss of generality we may there-
fore assume that K has the origin as centre of symmetry. Let E be the
(unique) ellipsoid of minimal area containing K. Obviously, we may
assume that E is a circle. On the other hand it is easily seen that
E^-\/2K, and therefore the family {x^E} is -y^-thin. As in the proof
of Corollary 3 it follows, by considering four-membered subfamilies of Jf,
that ^"(4) holds. The final part of the proof is then completely analogous
to the corresponding part of the proof of Corollary 3.

Remark 13. It is easy to find examples showing that the assumptions
of Corollary 4 are necessary. Even if only centrally symmetric sets are
considered, p-thinness, for some p < 2, is not sufficient, and the corollary
fails also for p = 2 if Jf* is allowed to be of the form {x^^K).
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