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A new Ceva-type th«ﬂ;rem
BRANKO GRUNBAUM and G. C. SHEPHARD

1. Introduction

The classical theorems of Ceva and Menelaus make assertions about the
value of certain products of ratios of lengths in configurations in the affinz
plane. We shall use the term Ceva-type to describe any tesult of this general
kind: one that specifies a configuration in affine space of n dimensions,
defined only by incidznces, about which one can make an assertion about 1
product of ratios of lengths, areas, etc. Several results of this kind are
known. Apart from the classical results there are, for example, Ceva's and
Menelaus' Theorems “or n-gons, Hoehn's Theorem for pentagrams [1], and
the Selftransitivity Thzorem of [2].

The purpose of this nte is to introduce a new result of this kind. Before
stating it in Section 2 we shall review some earlier results and show how
this Ceva-type theorem is related to them, Throughout we shall work in the
affine plane.

Let T = [V}, V3, V3] be a triangle and O be a fixed point which is no:
collinear with any two of the vertices V,, V5, V3 of T\ If each of the lines CV:
(i = 1,2 3) meets the opposite side of T in the point W, then the classical
theorem of Ceva slates

[VaWi | | ValVg | | VW) 51 0
CAANAANEZA

(see Figure ). Here the notalion |AB| means the ordinary (Euclidean)
length of the line segrient [A, B). We can write (1) in the slightly stronger

form
1—’1[ ViWisa ﬂ il
Pl WiV

where cach subscript f is reduced modulo 3 so that it lies in he range

1 €/ <3, and the shadowed brackets mean that signed lengths are to be

FIGURE 1
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taken into account, This means that if A, B, C are distinct collinear points,
then [AB/BC]| = +|AB|/| BC | where the sign is positive if B lies between
A and C, and is negative otherwise. It should be cbserved that [A5/8C] is
an affine invariant. (For further explanation of this notation, see [2].)

The extension of Ceva's Theorem to n-gons (1 odd, n > 3) concemns a
fixed point O in the plane of a general n-gon P = [V,, Vs, ..., V,). If the
lines OV; (joining O to vertex V;) meels the opposite side V,V.,, of P
(r =i+ }(n = 1)}in the point W,, then

H[[ﬂ_ﬂ = 1, (2)
i1l WiV

(See Figure 2 for the case n = 5.) We tacitly assume here and throughout the
test of this note thet everything is well defined, the points of intersection
exist (lines defining them are not parallel), and all the points are distinct so
that the quotients in (2) and similar expressions have non-zero
denominators. We emphasise that this result, like all others in this nate,
applies to general n-gons; non-adjacent vertices may coincide and edges
may intersect or overlap in any way, subject only to the restrictions stated in
the previous sentence. Another varianl of Ceva's Theorem, relating to
diagonals rather than sides of an n-gon, is staled in [2, Theorem 2],

FIGURE 2

In 1993, L.Hoehn swaled two theorems about pentagrams.
Generalisations of these were stated and proved in [2]. We quote these
results here since they are required later in the proof of the main theorem.,

Hoehn's First Theorem Let P = [Z,, ... , 2] be a given n-gon and / be an
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integer such that, for each i, the integers i — 2j, j — Jiob i+ 0+ 2f are
distinct (modulo n). Define V; (i = 1, ... , 1) to be the point of intersection
of Zi_ 2 2‘ and Z,‘ _}:2,' +j Then the points V, and Vl".’l lie on the line Zi _ij +f
and

IEIJZH;‘V; +jﬂ o

i= Vn Z: )
This theorem is illustrated for n = 7 and J =1 in Figure 3(a). The
conditions of the theorem imply n > 5.

FIGURE 3(z) FIGURE 3(b)

Heean's Second Theorem Lei P = [Zi s v Z,] be a given n-gon, and j. k
be positive integers such that J+ 2k =0 (modulo n), and for each
i=1,..,nthe integers i, { + k, | + Jo i+ J+ k are disiinet (modulo
myand i, i+ k P+ 2k, F 4+ 3k are distinet (modulo n). Define Vi as the
intziection of 2,7,y and Z.-,,Z,-””. Then the points V; and Vivax lie on

the line Z; Z;, , and
n[ ZV, ]' e
=1 Vf‘+1kznk .

This thearem is illusirated forn = 7 and U, k) = (1,3) in Figure 3(b). The
simpest case of the theorem arses when 1 = dand (7, k) = (2,1). Then
Vi = V3. Va = V, and the theorem reduces (5 a non-trivial statement about
the ritios of the lengths of sides of a complete quadrangle,

Ir both the classical and n-gonal form of Ceva's Theorem, the fixed
point O is joinzd to the vertex opposite to a given side of the n-gon P. An
alterrative interpretation (which is equivalent in the case of a riangle) 1s
that we join © to the point of intersection of the sides of P adjacent to the
given side. To intreduce our main theorem anc proof (which will be given in
the next section) we consider a very simple example, namely with n = 5 so
all the subscripts are reduced modulo § (see Figure 4). For a given side
VWVier of the pentagon P = [Vy, ¥y, Vi, Vi, V5] write Z; = ViViei Vi Viea
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FIGURE 4

and Wy = 0Z 0 ViV, fori=1,2,3 4, 5. Then we assert that

$ Vw-ﬂ
L =1, (3)
,U,[IWMH

To prove this we use a technique which we introduced in [2] and called
the Area Principle, This exiremely simple tool tums out to be very
powerful in establishing results of this kird, It states that because the
triangles T; = [0, Z, V] and Si = [0,Z,V,,)] have the same buse

[0, Z],
V,-u_/‘,-_]] - __[ 0z, :”
Wi dl 0ZV;i.

where the lemm on the right is the ratio of the signed areas of the triangles 7
and S; we recall that the signed area of a triangle is positive if the vartices
are listed in a counterclockwise direction, and negative if they are listed in 2
clockwise direction. More details conceming this notation can be found in

[2]. Hence
ST ViW, ST ozV,
HH"F‘T_‘ e nﬂ:—“-—'-] (4)
i=| u’a i+1 f=] Oél'v.ﬂl
[[Vrnznlﬂ . kﬂozuzvnzﬂ
ZJVJ'H OZ:'VHJ Y

since the triangles on the right have bases (Zs Visd) and [Z;,,, Vi, o] and
the same apex O (and so the same heights). Thus

T eaire S TOZ;, 5V,
n”i :+2' i 2” = ‘n[[ ’1-2' +2:”‘ (5)
/-J’iu - izl Olfi'r'ul

However

i=]
Clearly the right sides of (4) and (5) are identical, and the left side of (5)
takes the value 1 by Hoehn's First Theorem applied 1o the pentagram
[Zl, Za, Z3, 24, 75 with J = 1. (This is the original form of the theorem s
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stated i:y Hoehn in [1].) We deduce that the left side of (4) takes the value
1,50 (3) is established and the theorem is proved. (Hochn placed restrictions
on the pentagram, namely that the inner pentagram is convex, but as we
have shown in [2, Theorems 4 ard 5], these are unnecessary.)

2. The Main Theorem

Our main theorem extends the simple example in the previous section to
n-gons and their diagonals.

Theorem
Let P = [V}, ..., V,] be a general n-gon, O be a fixed point, and J, k
be given positive integers. Define
Z; = ViViei 0 VieiViekss

and Wi = 0Z, n ViV
where the subscripts are reduced modulo n (see Figure 5). Then if either of
the conditions

(a) j = & and the integers 0, j, 2/, 3/, 4j, 5f are distinct (modulo 1), or

(b) j+ 2k = 0, theintegers 0, &, j, j + k are distinct (modulo n) and the
integers 0, k, 2k, 3k are distinet (modulo n),

then
[I:w I",| o.l.ﬂ (6)
2
FIGURE 5
Proof -
By the area principle applied to riangles with base [C, Z]) we oblain

Vi, ﬂ _ _[[.0zvi ﬂ
H’l'vf'ft £ OZ,-V;...*

and so

ST YWY _ el 02V,
n[-lv,-vmﬂ i H[[OZM«J' &

i=1
Incase (a), writing k = j asin Figure 6, we see that Z; , ; and Z;_;lic on the

lire ViV, and
]:;’i }jbl11]:| [OZI v;vl+)
VZi-; 0Z,_V,
(The triangles on the right hzve the same apex O and their bzses are the line
segments in the fraction on the left.) Hence

Z:4iV; 0Z;, Vier] -
H ””’]]—(-)H = ®)
ViZi-; OZ Vi
Since j = £, the nght sides of (7) and (8) are identical, and the left side of
(81 takes the value | by Hoehn's First Theorem, quored above, with the same

value of j. We deduce that the left side of (7) takes the value 1, so (6) is true
and the theorem is proved in this case.

FIGURE 6

In case (b) withj + 2k = D we observe that Z;and Z; , lie on the line
V;K“.n (= V;Vf-j] and that

bl
1":41.!4”: O0Z; 44V 42

(see Figure 7) since the triangles on the right have the same apex O and their
bases are the line segments in the fraction on the left. Hence

. ZVi [[ OZV; ]
= (-1 9
Hl]: nzkzn-t ( ) H ozaﬂvnzk { )

Thz right sides of (7) and (9) are |der:tlcal. and the left side of (9) takes the
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value 1 by Hoehn's Second Theorem with the same values of j and k. We

deduce the left side of (7) takes the value 1, s0 (6) is true and the proof of
the thearem is complete.

FIGURE 7

3. Comments

The simplest cases of the main theorem arise when n = 4, VR
k = 1 which satisfy condition (b). Here all the points Z, ceincide, and the

resull (sez Figure §) that
4
Vi,
— Ll =] 10
H[[w.-mﬂ il

i=1
can readily be proved directly, that is, without using Hoehn's Theorem. The
valuess n =4,/ = 1,k = | do not satisfy either condition (2) or (b), yet
the theorem remains true: relation (10) holds in this case also (see Figure 9),
Again this is easy 1o prove. It scems remarkable that such simple thecrems
on quadrangles do not seem to appezr in the literature, However, as the

FIGURE 8 FIGURE 9
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referee pointed out, the assertion (illustrated in Figure 9) yields a simple
(Euclidean) proof of the fact that cross-ratios are invariant under projection,

For small values of n > 5, the numbers of non-trivial primitive distinct
cases of the main theorem are as follows. (An assertion is primitive if
HCF(n, /, k) = 1.) Where two different sets of parameters Jead to the
same assertion, only one is listed. (For example, the case n=35
J=k= 1 is the same as n = 53.j=1ks= 2)

v

n =5 two cases: f=k=1j=k=12

n =6 two cases: J=k=14j=4k=1

n =717, SiX cases: j=k=1j=k=2j= =3j=Lk=3
= ,k:Z,}':S.k=1.

n =8, four cases: J=ic=I;j=k=3;j=2,k=3;j=6,k=I

n=29 SiX cases: ;=k=I;j=k=2:j=ic=4,j=l‘k:4;
F=3k=2j=7%=1

n =10,  four cases: j=}c=l:j=k:3;1=4,k=3;}'=8 £

Thus, for n'>.5 the number of cases is equal to that of Hoehn's
Theorems. Forn = 4, as remarked above, an extra case arises, So far as
we are aware, this is the only anomalous €ase, a statement that we have

checked numerically by computer using Mathematica® software for all n up
to 13.

FIGURE 10

In fact we can say slightly more. Supposing that we do not insist that
the diagonals (which intersect in Z;) are necessarily contiguous with the
diagonal V|V, ,, and we write

Zi= VicVie o 0 VieraaVieraxsj
and
Wi = 0Z n VV,,,
for some r > 0 (see Figure 10). Then except in the case where Ziis a
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vertex of the n-gon (and the thedrem reduces to Ceva's Theorem for n-gons)
no relation of type (6) is valid for all n-gons with r > 0. Again, this has
been verified by computer for all n from 3 to 13.
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