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Several people commented on the preprint and published
versions of my paper [2] — hence this note to enlarge upon, add to,
and clarify the earlier statements.

The rhombic hexecontahedron of Figure 1 of [2], reproduced
again in Figure 1 below, has been (implicitly) described in several
papers that deal with stellations of the rhombic triacontahedron, and it
also was found by other people who apparently did not publish their
results. However, I did not feel it necessary to mention the stellation
papers in [2], since

1) I stated the fact that its kernel is the rhombic
triacontahedron; since every face-transitive and selfintersection-free
polyhedron is a stellation of its kernel, it clearly follows that this
hexecontahedron is a stellation of the triacontahedron;

Figure 1. The rhombic hexecontahedron described by Unkelbach [4] in
1940.
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(i1) none of the discussions of stellations of the rhombic
triacontahedron that were known to me preceded the reference to
Holden [H] for this hexecontahedron given in [2] (and the same is true
for the references brought to my attention since then);

(ii1)  the papers on stellations neither provided an illustration
of this hexecontahedron, nor singled it out among the considerable
number of other stellations they described. (Only in [3] is there an
offer to send interested readers a Supplement; this Supplement does
contain a diagram of the hexecontahedron in question, as one of a
series of "notable, fully supported stellations".)

Some readers seem to have obtained the impression that I had
meant to say that the polyhedron in Figure 1 is a "new hexeconta-
hedron". This impression may in part be due to the fact that the editor
placed a copy of Figure 1 on the title page of the issue of
GEOMBINATORICS in which [2] appears, and provided a caption
(on the inside front cover) which reads "The cover illustration comes
from the essay A New Rhombic Hexecontahedron, ...". However, none
of this justifies attributing to me any claim of priority, especially in
view of the introductory paragraph of [2] which concludes by stating
that this hexecontahedron "... appears in the very attractive and
unusual book by Holden [5], published in 1971."

Since [2] was written, I found what almost certainly is the first
publication which explicitly mentions the hexecontahedron, and
includes even a photo of a model; it is much earlier than any of the
other references I have. This is the paper [4]2 by Helmut Unkelbach,
which appeared in 1940 | In his review [1] of [4], Coxeter writes that
Unkelbach presents, among other polyhedra, "... a remarkable rhombic
hexecontahedron ... illustrated by a photograph of a model. ... Its faces
have the same shape as those of the triacontahedron, of which it is
actually a stellation."

The "new rhombic hexecontahedron" to which the title and text
of [2] refer is the one described and illustrated in [2], as well as here,
in Figures 2 and 3. While I believed when writing [2], and believe
now, that [2] is the first description of this polyhedron, the attentive

2 Although the journal in which the paper [4] appeared was
started mainly to serve as a propaganda forum for the Nazi philosophy,
and several of the articles that appeared in it were so disgusting that a
reprint of the journal after World War II provided blank pages instead
of them, some other articles contained valuable mathematics.
Unkelbach's paper [4] is one of these.



reader will observe that each time the word "new" was used in the text
and captions, it was in quotation marks. The reason for this hedging is
that although I am not aware of any prior description of this
polyhedron, its relatively simple construction may well have been
observed in some prior publication. If any reader knows of such a
publication, or of an earlier than [4] description of Unkelbach's
hexecontahedron, I would appreciate learning about it.

Due to technical difficulties in printing the journal, Figure 2 of
[2] came out somewhat mangled. In the text it is indicated that "three
faces ... have been highlighted by shading" — meaning, naturally, by
distinct shades, black and two different gray levels. Unfortunately,
the darker of two of the gray shadings came out black, thus
complicating the understanding of the structure of the polyhedron. In
Figure 2 shown below a different set of distinguishing shadings has
been used, in the hope that they will reproduce distinctly. To further
ease the visualization of this hexecontahedron, in Figure 3 it is shown
as it would appear if the three faces that partially hide the three shaded
faces were transparent, so that the shaded faces can be seen in their
entirety. The visible edges of the transparent faces have been rendered
in white, and this applies also to their intersections with the shaded
faces; these intersections are not edges of the polyhedron.

Figure 2. A version of Figure 2 of [2] in which a different shading is
used to highlight three of the rhombi.



In visualizing the "new" hexecontahedron it is important to
realize that it consists of two "layers" which are interwoven at the
S-valent vertices in the same way that the triangles or pentagons are
interwoven at the vertices of the well known Kepler-Poinsot regular
polyhedra usually denoted {3,5/2} and {5,5/2}, the great icosahe-
dron and the great dodecahedron. On the other hand, beneath every
6-valent vertex there is a 3-valent one.

Dr. Peter Messer kindly brought to my attention that among the
stellations of the rhombic triacontahedron listed in [3], the one
designated as J in Table 3 of [3], and illustrated in the Supplement
obtainable from the author, looks exactly like the "new" hexecon-
tahedron in Figures 2 and 3. In fact, although their models may appear
to be the same, Messer's stellation J and the rhombic hexecontahe-
dron are completely different polyhedra. By their definition,
stellations3 are solids. The boundary of the stellation J consists of
120 triangles, which are the parts of the 60 rhombi of Figures 2 and
3 that are visible from the outside (each rhombus of the
hexecontahedron has two triangular parts visible from the outside,
together with a kite-shaped quadrangular part not visible from the
outside). In other words, the union of all the bounded 3-dimensional
cells determined the rhombic hexecontahedron coincides with the
stellation J, but the stellations yields no information about the rhombi
which constitute the hexecontahedron, nor does it distinguish between
the cells enclosed once and those enclosed twice by the
hexecontahedron.

It is my sincere hope that the above explanations will have
completely clarified all questions that may have arisen in connection
with [2].

3 For the convenience of readers not familiar with stellations,
here is a thumbnail sketch of this concept. Given a polyhedron P, the
planes of the faces of P partition the 3-dimensional space into a finite
number of convex cells. Any union of some collection of these cells is
(in principle) a stellation of P. In practice, the starting polyhedron P
is always convex and very symmetric (regular, Archimedean,
isohedral, etc.) and only stellations which have the same, or nearly the
same, symmetry group as P are considered. Most authors restrict the
usually still huge number of stellations by considering only finite cells,
by choosing the cells as contiguous, and by imposing various other
conditions deemed appropriate for their studies.



Figure 3. A different view of the "new" rhombic hexecontahedron. In
order to show the three shaded faces completely, the three faces that
partially obscure them have been rendered as transparent, their edges

(and the intersections with the shaded faces) in white.
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