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Assume that we are given a simple polygon  P  (that is, a polygon
without selfintersections) which is nonconvex.  Then there is a line  L
determined by vertices  A  and  B  of  P  such that  P  is contained in one
of the closed halfspaces determined by  L,  but the segment  [A, B]
meets no points of  P  other than  A  and  B.  Figure 1(a) illustrates this
situation.  We shall call  (A, B)  an exposed pair of vertices of  P.  Then
[A, B]  together with one of the polygonal arcs of  P  determined by  A
and  B  forms a closed polygon, which encloses the other arc of  P
determined by  A  and  B.  Call these two arcs  P1  and  P2.  The
polygon  Q = f(P; A, B)  is obtained by "flipping" (reflecting) the arc  P2
about  L,  and joining it with the unmodified arc  P1.  This is illustrated
in Figure 1(b).
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Figure 1.  The transformation of a non-convex polygon by "flipping" of
an arc determined by an exposed pair of vertices.

Theorem 1.  Every simple polygon can be transformed into a
convex polygon by a finite sequence of flips about lines determined at
each stage by exposed pairs.
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Theorem 1 is illustrated by the example in Figure 2.

Figure 2.  A convex polygon obtained by a finite number of flips from
the polygon in Figure 1(b).

Proof.  Let us denote the given polygon by  P = P0; if  Pi  has
already been found and is nonconvex, let  Pi+1 = f(Pi; Ai,Bi),  where  (Ai,
Bi)  is an exposed pair of  Pi.  For definiteness, let us at each step
choose such an exposed pair  (Ai, Bi)  that the increase in the area
enclosed by the polygon is as large as possible.  Since the perimeter of
all polygons  Pi  is the same, all  Pi's  are contained in a fixed circle.  It
follows that if the sequence of distinct  Pi's  is infinite (thus contradicting
the assertion of the theorem) one can choose a subsequence of the
polygons such that corresponding vertices of the polygons form
sequences that converge to points of the limit polygon  P*.  Due to the
choices of the exposed pairs as maximizing the area, the polygon  P*  is
convex; each vertex of  P*  is a limit point of vertices of the  Pi's,  but
some of the limits may be interior points of sides of  P*.  Moreover,
since each flip either increases or leaves unchanged the distance from a
vertex to any point inside the polygon, it follows that  P*  is, in fact, the
limit of the complete sequence of polygons  Pi, without the need to select
a convergent subsequence.  We shall now show that  P*  is obtained, in
fact, already after a finite number of flips.

Each vertex  Vk  of  P*  (that is, a point of  P*  at which the two
sides incident with it form an angle strictly less that  180°) is a limit of
vertices  Vk,i  of the polygons  Pi.  Therefore there exist a positive  ε
small enough so that a circle  C,  centered at  V  and of radius  ε,  can be
separated by a straight line  L(Vk)  from the family of circles of radius  ε
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centered at the limit points of all the other vertices of the polygons  Pi.  If
Vk,i(k)  is the first among the vertices  Vk,i  inside  C,  then  Vk,i(k)  will
coincide will all the later  Vk,i's  since the existence of the separating line
L(Vk)  guarantees that  it will not belong to an arc that will be flipped.
Hence  Vk = Vk,i(k)  is immobilized after  i(k) steps, thus all of the
vertices of  P*  are reached already after  i* = max{ i(k) }  steps.  Since
the limit points of the polygons  Pi  that converge to non-vertex points of
P*  are also immobilized after  i*  steps, it follows that the
convexification is complete after the finite number  i*  of flips.   ◊

One of the reasons for bringing up the topic of convexification is
its strange history.  As far as I know, it began (more or less) as a
problem posed by Paul Erdös in 1935 [2].  Since then it has been solved
four times, with none of the solvers aware of the others, and none except
the first aware of Erdös's problem.  The first solution is that of B. de
Sz.–Nagy [6] in 1939.  He begins by showing that the problem as posed
by Erdös needs to be amended: Erdös asked whether a finite number of
steps will convexify every simple polygon, where a "step" consists of
simultaneously  carrying out the flips about all exposed pairs of vertices.
Sz.–Nagy observed that such a step may lead to non-simple polygons
(see Figure 3), and changed the problem to require that flips be carried
out one at a time.  He than proceeded to solve it; the proof given above is
essentially the one in [6].  Our Theorem 1 next surfaces in apparently
simultaneous papers by Reshetnyak [5] and by Yusupov [7] in 1957;
neither mentions any sources or references for the question, and the
proofs –– like those to be mentioned –– differ in details from the above
but follows similar ideas.

Figure 3.  An example in which simultaneous flips result in a non-simple
polygon.

Finally, a proof by R. H. Bing and N. D. Kazarinoff was
published in two venues: on pages 30 – 34 of Kazarinoff's book [3] and
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in the joint paper [1], both published in 1961; an abstract [4] announcing
their work appeared already in 1959.  No sources or references are given
in any of these publications, except that in [1] (but not in [3]) it is
mentioned in a concluding remark (that possibly was added in proof)
that the proof of Theorem 1 given in [6] is invalid; there is no basis for
this claim.  In all three publications by Bing and Kazarinoff it is
conjectured that the convexification of every polygon with  n  sides is
achieved after at most  2n  flips.  In [3], the discussion of the topic end
with the following line:

"Can you prove or disprove this conjecture? Paul Erdös did."
I am not aware of the reason for this statement, and I do not

know what Erdös did in this context; there appears to be no further
mention of the convexification question in Erdös' writings after [2].

There was one further development that should be reported, with
rather sad outcome.  In 1973 or 1974, R. R. Joss and R. W. Shannon (at
that time graduate students at the University of Washington) found a
simple counterexample to the Bing–Kazarinoff conjecture; it will be
given below, as Theorem 2.  They also proved what we shall formulate as
Theorem 3, which is a different way to convexify a simple polygon.
They sent a preprint to Kazarinoff, but he answered that their discussion
of the conjecture, and of the underlying flips, is "totally confusing", and
that they do not deal at all with the process he and Bing had in mind.
This apparently discouraged Joss and Shannon sufficiently so that they
never published their results.  (Although both were mathematically
talented, and obtained their Ph.D. from the University of Washington,
neither seems to be mathematically active –– at least as far as
publications go –– at the present time.)  Since it seems a shame that their
results be lost, as the second aim of this paper I shall present the two
achievements of Joss and Shannon.

Theorem 2.  For any positive integer  m  there exist simple
quadrangles that cannot be convexified by fewer that  m  flips.

Outline of the proof.  Consider the quadrangle  P  with vertices
A = (0, 0),  B = (2, 0),  C = (2 - cos 2ϕ, sin 2ϕ),  D = (cos ϕ, sin ϕ),
where  ϕ  is a small angle.  See Figure 4(a).  Then  P  has only one
exposed pair, A and C, and all derived polygons will also have only a
single possible exposed pair.  Since the images of  C  and  D  remain on
unit circles centered at  B  and  A  (see Figure 4(b)),  the number of flips
needed to reach a convex polygon will clearly increase without bound
with decreasing angle  ϕ.   ◊
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Figure 4.  Illustration of the construction of Joss and Shannon.

In order to formulate the second result of Joss and Shannon,
define a "flipturn" in the same way as a flip (that is, starting from an
exposed pair of vertices  A  and  B  of a polygon  P), but instead of
reflecting the smaller arc of  P in the line determined by  A  and  B, we
transform that arc by a halfturn about the midpoint of  [A, B]; see
Figure 5.  

Figure 5.  A flipturn determined by the exposed pair in Figure 1.

In contrast to the situation described by Theorems 1 and 2, we
now have:

Theorem 3.  Any polygon with  n  sides can be convexified by a
sequence of at most  (n-1)!  flipturns.
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Proof.  If  Q  results  from  P  by a flipturn, the sides of  P  and
Q  when considered as vectors consist of precisely the same vectors, and
differ only in their cyclic order.  Since there are at most  (n-1)!  cyclic
orders, and since every flipturn strictly increases the area so that no
permutation of the vectors can appear twice, it follows that there are at
most  (n-1)!  steps prior to reaching a convex polygon.   ◊

It seems rather obvious that the bound  (n-1)!  in Theorem 3 is
much too high.  Joss and Shannon concluded their manuscript by
conjecturing that  1

4  n2  flipturns are always sufficient.  This conjecture is
still open.

Another open question is whether one can start with a polygon
which is not necessarily simple, and convexify it in a finite number of
steps (either in the flips version, or in the flipturn version).  Concerning
the former, there is a remark in [BK] saying that "simplicity of the
polygon is not necessary".  However, no justification of this claim was
given; it seems likely that at least some restrictions have to be placed on
the polygons under consideration.
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