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Branko Grünbaum
Metamorphoses of polygons

The first three illustrations of this note show "metamorphoses" of polygons -- se-
quences of polygons gradually changing from one regular 14-gon to another regular 14-
gon.  While the "star"-polygons that arise at the intermediate steps can be enjoyed for
their unfamiliar but attractive shapes, there is quite a lot of mathematics that can be ap-
preciated at the same time.  I should hasten to add that there is nothing difficult or deep in
the mathematical aspects of these metamorphoses; in fact, most of the assertions I shall
make are so obvious that any formal proofs would only obscure the situation.

First, a brief explanation of the diagrams in Figures 1, 2 and 3.  Each begins and
ends with a regular polygon, that is, with a polygon in which all vertices are alike, and all
edges (sides) are alike.  The intermediate polygons are "regular" to a lesser degree -- only
the vertices of each are alike, while the edges are of two kinds.  In each of the three se-
quences, a finite number of polygons is shown; however, they are only instances that hap-
pen to have been selected from among families of polygons that change in shape continu-
ously, reaching through gradual change from one of the two extreme specimens to the
other.

Now, the first mathematical point to be made is that all the polygons shown in the
diagrams are 14-gons, despite the seemingly obvious presence of heptagons.  Clearly, this
calls for some explanation, and it brings up errors made almost two centuries ago and
perpetuated ever since.  We better start with some definitions.

Given an integer  n > 1, an  n-gon  P  is any collection of  n  points  A1, A2, ...,
An-1, An,  called vertices of  P,  together with the  n  segments  A1A2, A2A3, ..., An-1An,
AnA1,  called the edges of  P.  In general, the vertices can be points in any setting in
which it makes sense to talk about segments; in the present note we shall restrict our-
selves, without exception, to the traditional Euclidean plane.  The edges are straight line
segments; however, since the coincidence of two consecutive vertices has not been ex-
cluded, some of the segments that form edges can be reduced to single points.  The defi-
nition of "polygon" does not preclude this from happening; neither does it preclude many
other kinds of coincidence or overlap.  In fact, one could even admit the case in which all
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vertices coincide, though it should be granted that such a polygon is not of great interest; in
order to avoid repetitious exceptions, we shall exclude such polygons from all further con-
siderations.

Although some earlier writers made hints in the direction of such a general defini-
tion of polygons, the first explicit statement appears in Meister [7] -- an intriguing work,
with which posterity has dealt very poorly (as will be explained below).  The same definition
reappeared in Poinsot's often-quoted paper [9], and has since become standard -- except that
some authors balk at admitting consecutive vertices that coincide, while other workers forbid
the coincidence of any vertices, or even the placement of a vertex at any point of an edge
(other than the two of which it is an endpoint).  One hint why such a negative attitude is
unjustified appears in our diagrams: if polygons with coinciding vertices were banned from
the discourse, our continuous families of polygons would shatter into many fragments
(which would then be unrelated), and some of the extreme polygons would also be ruled out
of existence.  Clearly, the universe becomes more orderly if vertices may coincide.

Next, we should consider what is meant by "regular" polygon.  The idea, from time
immemorial, was that a polygon is regular if all its angles are congruent, and if all its edges
are congruent.  As can be seen by the example of the cross-shaped 12-gon that is the
boundary of the union of five congruent squares, this definition has to be taken with a grain
of salt: nobody would like to consider that polygon as regular.  Following Möbius [8], it
became customary to understand the requirements just stated in a stricter sense than con-
veyed by the words used, namely as additionally requiring that the two edges which deter-
mine an angle be correspondingly congruent to the two edges determining any other of the
angles, and analogously, that the two angles at the endpoints of each edge be correspond-
ingly congruent and equally placed on every other edge.  Clearly, this eliminates the un-
wanted examples.  The same goal can be achieved by considering the polygon and the plane
as oriented, so that angles can be positive as well as negative, and inserting the appropriate
requirement in the definition.

However, a much more elegant way relies on symmetries, that is, isometric mappings
(congruences) that may bring a polygon to coincide with itself.  The above definitions (in
the restricted versions) can be rephrased, equivalently, in each of the following two forms:

(1) A polygon  P  is regular if and only if

(a) for each pair of vertices of  P  there is a symmetry of  P  that maps
the first onto the second; and
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(b) for each pair of edges of  P  there is a symmetry of  P  that maps the
first onto the second.

(2) A polygon  P  is regular if and only if for each pair of flags of  P  there is a
symmetry of  P  that maps the first onto the second.

Although formally (1) seems to be more restrictive than the previous definition, and
(2) more restrictive than (1), in fact all these definitions are equivalent.

By well-known general arguments, all symmetries of a regular polygon (or any
other polygon) form a group of symmetries, in which the group operation is composition
of the isometries.  Condition  (a)  expresses the transitivity of the group of symmetries on
the set of vertices, condition (b) transitivity on the set of edges.  Any polygon satisfying (a)
is called isogonal, and any polygon satisfying (b) is said to be isotoxal.  The mathematical
fact visually expressed by Figures 1, 2 and 3 is the possibility of connecting certain pairs of
regular n-gons by a continuous family of isogonal n-gons.

But here again we run into the need for some explanations, since practically every
text that mentions regular star-polyhedra states that each can be denoted by a symbol  {n/d},
where  n  and  d  are relatively prime, a condition that clearly does not apply to such ex-
pressions as  {14/2}.  The rather dismaying story is as follows.

When starting his investigation of regular polygons, Poinsot [9] used definitions of
polygons and regular polygons equivalent to the ones given above.  He went on to say (with
different words, but quite correctly) that if  d ≤ n/2  is a positive integer relatively prime to
n,  and if  n  points equidistributed on a circle are connected to each other by segments each
of which spans  d  of the arcs determined by the points, a regular polygon is obtained; this
is the polygon usually denoted by  {n/d}.  After illustrating this construction with a few ex-
amples, Poinsot goes on to say (again, quite correctly) that if  n  points are equidistributed
on a circle, and are connected by segments each of which spans  d  of the arcs, but with  n
and  d  having a common factor  k > 1, then no regular polygon is obtained.  Instead of a
single polygon, one obtains a family consisting of  k  regular polygons of type  {n

k /dk }.

The logical error committed by Poinsot, and repeated ever since in all the texts, is the
assumption that the statements of the preceding paragraph prove the non-existence of regu-
lar polygons (satisfying the requirements of the definitions) but corresponding to values of
n  and  d  that are not relatively prime.  In fact, to see the fallacy of that assumption and to
actually construct the polygons in all cases, all one has to do is to start with a point on the
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circle, connect it to a second point by a segment spanning an arc which is  d/n  times the
length of the perimeter of the circle, connect that point to a third in the same way, and so on,
until the  nth step, which closes the circuit of edges of the polygon.  It is obvious that the
difference between  n  and  d  relatively prime or not is expressed by the fact that in the for-
mer case the nth  step will be the first time the starting point is met again, while in the latter
case it is the  kth  such encounter.  Although in that case  k-tuples of vertices of the polygon
come to lie at the same point, they all are still distinct as vertices.  Following the edges of
{n/d}  one goes around the center of the polygon  d  times before closing the circuit -- re-
gardless of whether  n  and  d  are relatively prime or not.  (If  d = n/2, the polygon appears
as a segment covered  n  times; since these polygons have certain special properties, in some
contexts they need to be considered separately.)

We note in passing that such "unconventional" regular polygons as  {6/2}, {8/2},
etc.  can be used to generate "unconventional" regular polyhedra -- but exploring this direc-
tion in the present paper would lead us too far afield.

It is important to understand that, for example, the regular polygon  {20/4}  (in
which the 20 vertices are located by fours on each of five points, which are the vertices of a
regular pentagon) consists of one circuit of 20 edges winding four times around the penta-
gon -- and not of four superimposed pentagons.  The error just mentioned is one of many
made by Edmund Hess (see [5], page 632) in his study of isogonal polygons (which will be
discussed below).

The mistakes of Poinsot and Hess are even more striking in view of the fact that
Meister [7], writing at a much earlier date, saw the situation correctly, and explained and il-
lustrated it in great detail -- including the diagrams of all ten regular 20-gons  {20/1},
{20/2}, ..., {20/9}, {20/10}.  But instead of gratitude, Meister reaped slander:  it appears
that the only person who read Meister's masterpiece during the first 200 or so years after its
publication was the historian of mathematics Sigmund Günther; unfortunately, Günther ([4],
pp. 45-46) misquotes Meister's explicit statements and ascribes to Meister the same (erro-
neous) conclusions that were reached by Poinsot.  All later writers (such as Brückner [1]), if
they mention Meister at all, quote from Günther, thus missing the deeper understanding
achieved by Meister, and helping perpetuate Poinsot's fallacy.

With these explanations, the mysteries and misgivings concerning the endpoints of
each of the metamorphoses are removed, and it is time to clarify the construction of the in-
termediate polygons.  The idea is as follows.  We start, as appropriate according to the
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above explanations, by taking, for  j = 1, 2, ..., n,  on a circle  C  points  Aj  that determine
with a fixed radius  R  of  C  an angle of  2πd

n   ·j, and connecting  each  Aj  to  Aj+1  by a
segment.  This yields a regular polygon  {n/d}.  From now on, we shall assume that  n  is
even since, if  n  is odd, it is easy to see that every isogonal  n-gon must be regular, hence of
no interest in the present context.  The continuous families visualized in the diagrams arise
by taking a parameter  t ≥ 0,  and locating  Aj  so that the angle to the radius  R  is             
2π
n   ·(j·d + (-1)jt); in other words, the vertices of the starting regular polygon are alternately
moved ahead or backwards from their original position, all through the same distance.
Clearly, an isogonal polygon is obtained regardless of the value of  t;  however, a short cal-
culation shows that when  t = n/4  the isogonal polygon is, in fact the regular polygon
{n/e},  where  e = n2  - d.  We take this value of  t  as the end of our metamorphosis; if larger
values of  t  are used, one obtains the same kinds of isogonal polygons as before, but in the
opposite order, till one reaches the starting regular polygon  {n/d}  at  t = n/2.

In the diagrams of Figures 1, 2 and 3 the values of  d  are  1, 2 and 3, respectively;
the value of  t  is indicated near each of the polygons.

The metamorphoses just described are most interesting for such values of  n  which
are twice an odd prime -- this is the reason the illustrations deal with  n = 14.  The reader
may find it amusing to investigate the families that result for some other values of  n  that
are equal to twice an odd number.  It is not hard to show that the procedure just explained
yields all possible isogonal polygons in these cases.  However, if  n  is divisible by  4  an-
other metamorphosis is possible.  It is illustrated in Figure 4  for  n = 4.  We leave it to the
reader to investigate what are the analogues of the sequence in Figure 4 for other values of
n  that are divisible by  4, and to formulate a complete description of the isogonal polygons
possible in these cases.

The polygons in Figure 1, 2 and 3 are meant to show all possible types of isogonal
14-gons.  Naturally, such a statement makes sense only if we agree on a definition of type --
in other words, if we provide criteria allowing us to distinguish between polygons of types
that are considered distinct.  This task is less simple that it may appear at first blush, and the
details are, in fact, largely a matter of convenience.  The (somewhat redundant) criteria we
adopted that two isogonal polygons have to satisfy in order to be considered of the same
types are the following, all formulated under the assumption that a fixed correspondence has
been chosen between their vertices:
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Figure 4. Metamorphosis of  {4/1}  to  {4/2}, through isogonal polygons.

(i) on the circumcircle of each, corresponding vertices have to coincide in the
the same sets, and follow in the same order;

(ii) corresponding edges meet or fail to meet in the same way in both, and, on
each edge, the order of intersections by the other edges is the same as on the corresponding
edge in the other polygon;

(iii) if three or more edges of one polygon meet at one point, the same is true for
the corresponding edges of the other;

(iv) the symmetry groups of the two have to be isomorphic, and act on the poly-
gons in the same way.

With this definition, it is easy to verify that Figures 1, 2 and 3 show all types of
isogonal  14-gons, except the regular polygon  {14/7}.  Similarly, in Figure 4 are shown all
types of isogonal 4-gons.

The metamorphoses in our diagrams can be used to illustrate the concepts of wind-
ing number and rotation number, and to clarify the distinction between them.  For both con-
cepts it is necessary to orient the polygon, and we shall assume that an orientation has been
chosen in each case.  The rotation number  r  of a polygon  P  can be defined as the sum
of the deflections at the vertices of  P, measured in units of the full angle; the deflection at a
vertex  Aj  is the angle through which the extension of the incoming edge has to be turned in
order to coincide with the outgoing edge, the angle being chosen to lie between  -1/2  and
1/2  of the full angle.  (We recall that counterclockwise angles are counted as positive,
clockwise ones as negative.)  It follows that the rotation number is undefined if an edge
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overlaps with the following one (since there is no way to decide whether the deflection is 1/2
or -1/2), or if two consecutive vertices coincide (since the single-point edge does not deter-
mine any direction).  The first eventuality happens, for example,  for regular polygons
{n/d}  where  d = n/2;  the second occurs, in a very important role, among isogonal poly-
gons, as we shall see shortly.  Regardless of the relative primeness of  n  and  d,  the rotation
number of a regular polygon  {n/d},  with  1 ≤ d < n/2,  is either  d  or  -d,  depending on the
orientation.

While the rotation number of a polygon depends only on the polygon itself, the
winding number depends on a reference point as well.  If  O  is a point, the winding number
w(P,O)  with respect to  O  of a polygon  P  can be computed by following a suitable ray  X
(or any curve, for that matter)  from  O  to points sufficiently far, so as to reach outside a
circle enclosing the whole polygon;  each time the ray crosses the polygon we obtain a con-
tribution to the winding number, the contribution being  1  if the direction of the polygon at
the crossing is from right to left when looking in the direction of the ray, and  -1  otherwise.
For this to work,  O  should not lie on any line determined by the edges of  P,  and  X
should not pass through any vertex of  P.  It is well known that the winding number does
not depend on the particular ray  X  chosen, that the value of  w(P,O)  is the same as
w(P,O*)  if the segment  OO*  meets no edge of  P,  and that the definition of  w(P,O)  can
be extended by continuity to all points of the plane except those on the edges of  P.  Addi-
tional information about the rotation and winding numbers, as well as some other functions
associated with polygons, can be found in Grünbaum & Shephard [3].

Both the rotation number and the winding number change sign if the direction of the
polygon is reversed.  Hence it is in many cases convenient to assume that the orientation is
such that one of these numbers is nonnegative.  However, as the examples in Figures 1, 2, 3
show, it is not in all cases possible to choose the orientation so that both numbers are posi-
tive.

In connection with regular polygons, it is customary to call the absolute value of the
winding number of a polygon  P  with respect to its center  O  the density of  P.  It is well
known and easily shown that the density of  {n/d}  is  d;  this holds regardless of the rela-
tive primeness of  n  and  d, except that the density of  {n/d}  is not defined if  d = n/2.  The
winding numbers of isogonal polygons are also usually considered with respect to the cen-
ter of the polygon; hence the winding number (with respect to the center) of an isogonal
polygon is not defined if some of the edges of the polygon pass through the center.
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It is of interest to follow the values of the rotation and winding numbers as we ad-
vance in each of the metamorphoses in Figures 1, 2 and 3.  When  t  satisfies  0 ≤ t < 1/2,
the rotation number has constant value  ±d (the sign depending on the orientation);  at  t =
1/2  pairs of consecutive vertices coincide, and the rotation number is undefined.  For  t
with 1/2 < t ≤ n/4 (in the present case  n = 14)  the rotation number is  ±(d – n2 ).  In con-
trast, for  t  with  0 ≤ t < n/4 – d/2 the winding number with respect to the center is ±d, and
for n/4 -– d/2 < t ≤ n/4  the winding number is ±(d - n2 ); for t = n/4 – d/2  the winding num-
ber with respect to the center is not defined.  We see that in the interval  1/2 < t < n/4 – d/2
the rotation number and the winding number have opposite signs, regardless of the orienta-
tion.  It should be mentioned that although an analogous situation occurs with isogonal n-
gons when  n  is divisible by 4, the second part of Figure 4 shows a new phenomenon:  the
winding number is undefined, and the rotation number is  0.

Isotoxal  n-gons, that is polygons in which the symmetries act transitively on the
edges, behave analogously to the isogonal  n-gons; they also present a variety of interesting
shapes, transitional between regular polygons  {n/d}  and  {n/e},  where  e = n2  – d.  In Fig-
ures 5, 6 and 7 we show representative isotoxal  14-gons,  with  d = 1, 2 or 3,  respectively.
We shall not dwell in detail on their construction or properties, but would like to point out
two aspects.  First, the behaviour regarding rotation numbers and winding numbers is sim-
pler (and less interesting) then among isogonal polygons:  the values of the two numbers
coincide whenever defined, and in each of the metamorphoses, there is a single polygon for
which they are not defined; at that stage, the common value changes from  ±d  to  ±(d - n2 ).

The second aspect worth mentioning is the duality between isogonal and isotoxal
polygons.  In the older literature (and some of the newer as well) much is made of duality
among polygons, without bothering to point out the limitations of the assertions.  It is well
known that in the projective plane there is a complete duality between points and lines, that
is, a correspondence between points and lines that preserves incidences.  Due probably in
part to the widespread semantic confusion caused by the venerable tradition of using the
word "line" to denote both the infinite lines (of the Euclidean or projective planes) and the
finite segments of straight lines, many writers have blithely discoursed on the duality of
polygons in general, and regular and other special polygons in particular.  This is especially
visible in the writings of Hess [5] and Brückner [1], who have at length discussed the dual-
ity between isogonal and isotoxal polygons.  We shall not repeat here the details of the ob-
jections that can be raised against duality among polygons (or polyhedra) in general, since
their polyhedral formulation can be found in Grünbaum & Shephard [2].  It is clear that
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there is nothing wrong concerning the duality of convex polygons and polyhedra; also, for
regular polygons and polyhedra, and for many polygons that have a "center", one can give

{14/6}

{14/1}

*

Figure 5. Metamorphosis of  {14/1}  to  {14/6}, through isotoxal polygons.
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{14/5}

{14/2}

Figure 6. Metamorphosis of  {14/2}  to  {14/5}, through isotoxal polygons.
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{14/4}

{14/3}

Figure 7. Metamorphosis of  {14/3}  to  {14/4}, through isotoxal polygons.

reasonably satisfactory definitions of duality.  But the diagrams of the metamorphoses
shown in the present paper quite clearly show what can go wrong in these dualities.  The
polygons in Figures 1 and 5 correspond to each other by such a duality (in fact, by recipro-
cation in a suitable circle) in all cases except one: the isogonal 14-gon for  t = 3  does not
admit a dual isotoxal polygon under that duality, and the isotoxal polygon marked by an
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asterisk does not correspond to any isogonal polygon under the same duality.  Similar is the
situation in the "dual" pairs of metamorphoses in Figures 2 and 6, and in Figures 3 and 7.
Even more blatant is the lack of duality between the isogonal 4-gons shown in Figure 4, and
the isotoxal 4-gons shown in Figure 8.

In conclusion, here are some historical remarks.  I am not sure about the origin of
the winding numbers (which play a rather prominent role in the calculation of areas), but
they were certainly defined and used by Meister [7]; Steinitz [10], p. 4, assigns to Meister
the priority of their definition.  The rotation numbers were also introduced rather early, by
Wiener in his frequently mentioned but apparently rarely read work [12].  Wiener used the
word "Art" (German for "kind") instead of rotation.  Unfortunately for Wiener, and for
mathematics, Hess [5] (mis)appropriated the term "Art" for a different concept which has
not turned out to be useful; however, since Hess (and later Brückner [1]) used the term in
the modified sense, Wiener's original concept was effectively forgotten.  It was independ-
ently rediscovered only much later, by Whitney [11] in 1936; rotation numbers play an im-
portant role in topological considerations, as well as in the classification of polygons (see
Mehlhorn & Yap [6]).

The work of Hess [5], which we have already mentioned several times, sets out to
investigate isogonal and isotoxal polygons at length.  Unfortunately, it is essentially devoid
of any worthwhile results or insights, mainly due to his insistence of classifying the poly-
gons by their "Art" according to his definition of this term.  There seems to have been no
later investigation of these interesting types of polygons, besides Brückner's [1] account of
some of Hess's statements.  It is my hope that the present note will make the isogonal and
isotoxal polygons more accessible, and will lead to their use as examples of various con-
cepts and misconceptions.  But above all I hope that there may be more appreciation given
to their visually appealing qualities.

{4/1}
1

2

3

4

1

2

3

4

1

2,4

3

2,4

1

3

2,41,3
{4/2}

Figure 8. Metamorphosis of  {4/1}  to  {4/2}, through isotoxal polygons.
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