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Early in 1992, while preparing material for a course on polyhedra
and related topics, I happened to look again at an often-mentioned paper
by Andreini (published in 1905) in which the uniform tilings of the 3-
dimensional space are enumerated.  I have seen that paper several times
in the past –– but this time I noticed that one of the 25 tilings listed as
uniform is not a uniform tiling at all!  Becoming suspicious, I decided to
enumerate the uniform tilings on my own.  As it turned out, Andreini
was wrong on several counts: not only did he include one non-uniform
tiling (#13' in his list), he also missed four uniform ones.  As often
happens, within a very short time after completing my enumeration I had
two other occasions to think about uniform tilings of 3-space.  First, I
discovered that N. W. Johnson, in the manuscript of a book he was
preparing to publish, also enumerated the uniform tilings, arriving at the
same 28 tilings as I did -- and he did it well before I did so.  Second,
shortly after that I received a letter from I. Alexeyev (from Pskov in
Russia) saying that he has enumerated the uniform tilings and asking
whether this has been done before.  Alexeyev did not say what the
results of his enumeration are, nor when did he carry it out.  I
communicated to him what I knew, but did not receive any further word
from him.  Seeing that the publication of Johnson's book appears to have
been delayed, and that the accounts of uniform tilings in other
publications (Critchlow (1970), Williams (1972)) are even more
deficient than that of Andreini, I decided to publish my list, with the
explicit acknowledgement that the priority of carrying out the
enumeration belongs to Johnson.

To begin with, precise definitions of several concepts which are
relevant to the enumeration will be given.  This is particularly important
because of the varying usage of some of the terms.

In this note by polyhedron we mean a 3-dimensional compact
convex polyhedron.  The neighborhood  of a vertex  V  of a polyhedron
P  is the set of faces of  P  that contain  V.  A polyhedron  P  is
Archimedean if all its faces are regular polygons and the neighborhoods
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of all vertices are mutually congruent;  P is uniform if its faces are
regular polygons and its vertices form one orbit under the symmetries of
P.  For the Archimedean and the uniform polyhedra it is customary to
describe them by the sequence of faces that form the neighborhood of a
vertex.  It is well known that the uniform polyhedra can be enumerated
as follows: There are two infinite families (prisms  (4.4.n)  and
antiprisms (3.3.3.n)), five regular (Platonic) polyhedra (with symbols
(3.3.3), (3.3.3.3), (3.3.3.3.3), (4.4.4), (5.5.5)), and 13 other polyhedra
(with symbols  (3.3.3.3.4), (3.3.3.3.5), (3.4.3.4), (3.4.4.4), (3.4.5.4),
(3.5.3.5), (3.6.6), (3.8.8), (3.10.10), (4.6.6), (4.6.8), (4.6.10), (5.6.6)).
Clearly, every uniform polyhedron is Archimedean, but there is one
n o n u n i f o r m  A r c h i m e d e a n  p o l y h e d r o n ,  the
"pseudorhombicuboctahedron"  (3.4.4.4)*;  it is shown in Figure 1,
together with the uniform polyhedron  (3.4.4.4)  that has the same
neighborhoods of vertices.  By a tiling of the 3-dimensional space we
shall understand a collection of polyhedra covering the space without
gaps or overlaps, such that the polyhedra used meet face-to-face.  The
neighborhood of a vertex of a tiling is the collection of all polyhedra of
the tiling that contain that vertex.  We shall consider only tilings by
uniform polyhedra, and we shall say that a tilings is Archimedean if all
vertices have congruent neighborhoods, and that it is uniform if all the
vertices form one orbit under symmetries of the tiling.  (One could make
analogous definitions for tilings in which Archimedean polyhedra are
admitted; however, it turns out that no additional tilings would result.)
To denote a uniform or Archimedean tiling we shall list the types of
polyhedra that occur in the neighborhood of each vertex, with an
exponent to denote the number of polyhedra of each kind in such a
neighborhood.

I do not know of any elegant method of enumerating uniform
tilings.  In my enumeration I first compiled lists of possibilities of uni-
form polyhedra fitting around an edge, then lists of uniform polyhedra

(3.4.4.4) (3.4.4.4)*

Figure 1.  A uniform polyhedron and a nonuniform Archimedean
polyhedron with the same vertex neighborhoods.
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(3.3.3.3.3.3)     S1      (3.3.3.4.4)        S2      (3.3.4.3.4)        S3

(3.4.6.4)            S4     (3.3.3.3.6)        S5      (3.6.3.6)            S6

(3.12.12)           S7      (4.4.4)              S8      (4.6.12)            S9

(4.8.8)              S10      (6.6.6)             S11

Figure 2.  The eleven uniform tilings of the plane, which give rise to the
slabs  S1  to  S11.  By simple stacking, these slabs yield uniform tilings
listed as  ##11, 13, 14, 16, 17, 18, 19, 22, 23, 24,  and  26  in Table 1.
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that could fill up the space around a vertex, and finally considering for
each case whether a "candidate" arrangement can actually be uniformly
extended from the neighborhood of a vertex to a tiling of the whole
space.  This seems to be close to the method followed by Andreini.
Clearly, such a procedure leaves ample space for errors, and I was very
happy when I found that my enumeration coincides with Johnson's.  The
result of the enumeration is given in List 1.  To save space in the list, the
following remarks are useful.

A slab is the part of space between a pair of parallel planes.
Many of the uniform tilings can be viewed as consisting of stacks of
slabs.  For example, for each of the eleven uniform tilings of the plane
shown in Figure 2 (see Grünbaum & Shephard (1987, Chapter 2) for a
more detailed discussion) we can form a slab consisting of prisms with
squares as faces of the mantle; we denote these slabs by  S1  to  S11.
Tilings  ##11, 13, 14, 16, 17, 18, 19, 22, 23, 24,  and  26  in Table 1 are
obtained by stacks of slabs of one kind.  Three other slabs are shown in
Figure 3.  Both tilings  ##1  and  2  are formed by the same slabs S12
consisting of tetrahedra and truncated tetrahedra; the difference is that in
tiling  #1  each of the triangles that form the boundary of the slabs is
adjacent to a tetrahedron in one slab and an octahedron in the other,
while in tiling  #2  each such triangle is adjacent either to two tetrahedra,
or to two octahedra.  Tiling  #6  consists of slabs  S13  of tetrahedra and
truncated tetrahedra, while tiling  #12  consists of slabs  S14  made from
3-sided prisms arranged so that the boundary of the slab is formed by
squares; in adjacent slabs the orientations of the prisms differ by  90°.
Tilings  ##3  and  4  result from tilings  ##1  and  2  by intercalation of
slabs  S1  of  3-sided prisms (with triangles on the slab boundary), while
tiling  #15  is obtained from tiling  #12  by intercalating slabs of cubes.
Thus  18  of the  28  tilings are best understood as consisting of slabs;
the other ten have a more intricate structure.  Lack of space prevents us
from showing illustrations of these ten tilings; however, they all can be
found in both Critchlow (1970) and Williams (1972).

It must be noted that Critchlow and Williams are not explicit in
the characterization of the kind of tilings they show; they neither claim,
nor achieve, completeness in listing uniform tilings.  Moreover, although
Archimedean tilings of  3-space fit the class of tilings they discuss, they
both miss the fact that there are uncountably many such tilings.
Nonuniform Archimedean tilings of  3-space can be obtained simply by
alternating slabs  S14  and  S8, and utilizing the freedom to choose one
of the two possible orientations of  S14  at each level (the
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Slab  S12  consisting of tetrahedra and octahedra.

Slab  S13  consisting of tetrahedra and truncated tetrahedra.

Slab  S14  consisting of 3-sided pyramids.
Figure 3.  Three slabs, not generated by prisms over uniform tilings of

the plane, which are used in the construction of uniform tilings.  To
facilitate the viewing, the "bottom" of each slab is shown in front of the

polyhedra that form the slab.

uniform tilings  ##13  and  15  correspond to consistent choices for
positions of  S14  throughout the stack; all other choices yield
nonuniform tilings).  Another such family results from alternating slabs
uniform tilings  ##13  and  15  correspond to consistent choices for
positions of  S14  throughout the stack; all other choices yield
nonuniform tilings).  Another such family results from alternating slabs
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S12  and  S1  (here the consistent choices of positions for the  S12
slabs yields uniform tilings  ## 3  and  4).  I do not know whether there
exist other nonuniform Archimedean tilings.

List 1.  UNIFORM TILINGS OF EUCLIDEAN 3-SPACE.

These are tilings by uniform polyhedra, in which the polyhedra meet
face-to-face, and all vertices are equivalent under symmetries of the
tiling.  The polyhedra are indicated by their "Schläfli" symbol, and the
superscripts show how many polyhedra of the given kind meet at each
vertex of the tiling.  "Ratio" indicates the ratio of the quantity of the
different polyhedra in the tiling.  The references are as follows:  A
stands for Andreini (1905);  C  stands for Critchlow (1970);  W  stands
for Williams (1972);  J  stands for Johnson (1991), and the two digits
xy  that follow stand for Johnson's expression 4.51xy.

#1. (3.3.3)8.(3.3.3.3)6 -A;  ratio  1 : 2.
Tetrahedra and octahedra; stacks of  S12, with tetrahedra and octahedra
meeting at boundaries of slabs.  [A-2, C, W-9, J-21 = J-31 = J-51]

#2. (3.3.3)8.(3.3.3.3)6 -B;  ratio  1 : 2.
Reflected layers of octahedra and tetrahedra; stacks of  S12, with
tetrahedra meeting tetrahedra and octahedra meeting octahedra at
boundaries of slabs.  [A-2', J-52]

#3. (3.3.3)4.(3.3.3.3)3.(3.4.4)6 -A;  ratio  2 : 1 : 3.
Alternating layers of 3-sided prisms and layers of tetrahedra and
octahedra; slabs  S12 (as in #1) intercalated by slabs of  S1.  [J-61]

#4. (3.3.3)4.(3.3.3.3)3.(3.4.4)6 -B;  ratio  2 : 1 : 3.
Alternating layers of 3-sided prisms and reflected layers of octahedra
and tetrahedra; slabs  S12 (as in #2) intercalated by slabs of  S1.  [J-62]

#5. (3.3.3).(3.4.4.4)3.(4.4.4);  ratio  2 : 1 : 1.
Tetrahedra, rhombicuboctahedra and cubes.  [A-16, C, W-11, J-23]

#6. (3.3.3)2.(3.6.6)6;  ratio  1 : 1.
Tetrahedra and truncated tetrahedra; stacks of slabs  S13.  [A-13, C,
W-10, J-25 = J-33]

#7. (3.3.3.3)2 (3.4.3.4)4;  ratio  1 : 1.
Octahedra and cuboctahedra.  [A-15, C, W-14, J-12 = J-32]

#8. (3.3.3.3).(3.8.8)4;  ratio  1 : 1.



Page 7

Octahedra and truncated cubes.  [A-14, C, W-15, J-13]
#9. (3.4.3.4).(3.4.4.4)2.(4.4.4)2;  ratio  1 : 1 : 3.
Cuboctahedra, rhombicuboctahedra and cubes.  [A-17, C, W-12, J-14]

#10. (3.4.3.4).(3.6.6)2.(4.6.6)2;  ratio  1 : 2 : 1.
Cuboctahedra, truncated tetrahedra and truncated octahedra.  [A-21, C,
W-17, J-22 = J-34]

#11. (3.4.4)12 -A
Layers of three-sided prisms; stacks of  S1.  [A-4, C, J-41]

#12. (3.4.4)12 -B
Square-faced layers of three-sided prisms, rotated 90°; stacks of slabs
S14.  [J-63]

#13. (3.4.4)6.(4.4.4)4 -A;  ratio  2 : 1.
Layers of prisms over (3.3.3.4.4); stacks of  S2.  [A-11', C, J-65]

#14. (3.4.4)6.(4.4.4)4 -B;  ratio  2 : 1.
Layers of prisms over (3.3.4.3.4); stacks of  S3.  [A-11, C, J-44]

#15. (3.4.4)6.(4.4.4)4 -C;  ratio  2 : 1.
Alternating layers of square-faced layers of three-sided prisms and
cubes; the layers of prisms related by rotations; slabs  S14 (as in #12)
intercalated by slabs of  S8.  [J-64]

#16. (3.4.4)2.(4.4.4)4.(4.4.6)2;  ratio  2 : 3 : 1.
Layers of prisms over (3.4.6.4); stacks of  S4.  [A-9, C, J-47]

#17. (3.4.4)8.(4.4.6)2;  ratio  8 : 1.
Layers of prisms over (3.3.3.3.6); stacks of  S5.  [A-12, C, J-48]

#18. (3.4.4)4.(4.4.6)4;  ratio  2 : 1.
Layers of prisms over (3.6.3.6); stacks of  S6.  [A-8, C, J-43]

#19. (3.4.4)2.(4.4.12)4;  ratio  2 : 1.
Layers of prisms over (3.12.12); stacks of S7.  [A-7, J-46]
(Both  C  and  W  list this tiling, but show incorrect diagrams.)

#20. (3.4.4.4).(3.8.8).(4.4.4).(4.4.8)2;  ratio  1 : 1 : 3 : 3.
Rhombicuboctahedra, truncated cubes, cubes and octagonal prisms.  [A-
19, W-19, J-18]

#21. (3.6.6).(3.8.8).(4.6.8)2;  ratio  2 : 1 : 1.
Truncated tetrahedra, truncated cubes and truncated cuboctahedra.
[A-20, C, W-16, J-24]
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#22. (4.4.4)8
Cubes; stacks of  S8.  [A-1, C, W-1, J-11 = J-15]
#23. (4.4.4)2.(4.4.6)2.(4.4.12)2;  ratio  3 : 2 : 1.
Layers of prisms over (4.6.12); stacks of  S9.  [A-10, C, W-8, J-49]

#24. (4.4.4)2.(4.4.8)4;  ratio  1 : 1.
Layers of prisms over (4.8.8); stacks of  S10.  [A-6, C, J-45]

#25. (4.4.4).(4.6.6).(4.6.8)2;  ratio  3 : 1 : 1.
Cubes, truncated octahedra and truncated cuboctahedra.  [A-18, C, W-13,
J-17]

#26. (4.4.6)6
Layers of hexagonal prisms; stacks of  S11.  [A-5, C, W-3, J-42]

#27. (4.4.8)2.(4.6.8)2;  ratio  3 : 1.
Octagonal prisms and truncated cuboctahedra.  [A-22, C, W-18, J-19]

#28. (4.6.6)4
Truncated octahedra.  [A-3, C, W-2, J-16 = J-35]
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