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STABLE COLORING
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In a recent issue of the American Mathematical Monthly, Raphael M.
Robinson proposed an interesting problem [4] which he attributes to
David Gale:

The hyperbolic plane is tiled with equilateral triangles
meeting seven at each vertex. Can the tiles be colored
with seven colors in such a way that no two tiles of the
same color meet, even at a vertex?  

The problem is highly nontrivial, and Robinson's affirmative solution
is very ingenious.  Thus the following definition seems to lead to
interesting unsolved problems.

We shall say that a planar map (or a tiling)  M  is stably colored by
c  colors if each country (tile) of  M  is assigned one of the  c  colors in
such a way that any two countries whose closures meet are assigned
different colors.  The stable coloring number of a map  M  is the
smallest  c  such that  M  can be stably colored by  c  colors.  Clearly, if
a map is 3-valent, its stable coloring number is the same as its chromatic
number.  It is equally obvious that the stable coloring number of a map
of maximal valence  v  is greater than or equal to  v.  We shall say that
the stable coloring number of  M is  minimal  if it is equal to  v.

One can check easily that of the five regular maps, the tetrahedron
and dodecahedron admit no minimal stable coloring, while the cube,
octahedron and icosahedron have such colorings. (A stable 5-coloring of
the icosahedral map is shown in Figure 1.)  Also, the three Euclidean
regular tilings of the plane admit minimal stable colorings, and
Robinson's result shows that the regular 7-valent tiling of the hyperbolic
plane by triangles also admits a minimal stable coloring.  This then leads
to the following question, which is probably very hard:

Conjecture 1.  If  v ≥ 4,  every regular v-valent tiling of the
hyperbolic plane admits a minimal stable coloring.
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Figure 1.

We note in passing that it is well known (see, for example,
[2, Section I.3.3] or [3, Section 4.7], and the references given there) that
for every  v  and every  p  such that  1/v + 1/p < 1/2  there exists a
regular  v-valent tiling of the hyperbolic plane in which each country
(tile) is a regular  p-gon.  It can be checked easily that 3-valent tilings of
the hyperbolic plane by regular  p-gons with odd  p  do not admit
minimal stable colorings; they do have stable 4-colorings (since every
finite submap has a stable 4-coloring).

It would be of interest to find conditions under which finite maps of
maximal valence  v  admit minimal stable colorings.  Among  v-valent
maps in which all vertices form one transitivity class under
automorphisms of the map, some admit minimal stable colorings while
others need  v+1  colors for a stable coloring.  In Figures 2 and 3 we
show one example of each possibility, for one of the more complicated
maps of this kind.

This remark, and a rather large number of experiments on other
maps, led to the following conjecture:

Conjecture 2.  Any planar map of maximal valence  v  admits a stable
coloring with at most  v+1  colors.
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Figure 2.

Stable coloring can be investigated for maps on manifolds of any
genus  g,  or on nonorientable surfaces.  Examples show that the stable
coloring numbers of such maps may grow rapidly with the genus.  For
instance, the regular toroidal map denoted  {4,4}3,0  by Coxeter and
Moser [1, Section 8.3] is a 4-valent map with  9  quadrangular countries
all of which must receive distinct colors in any stable coloring.  At
present there is too little numerical or other evidence to justify making
any guesses as to the relation between genus, maximal valence and stable
coloring number of maps on such manifolds.
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Added in proof (18 March 1994).  It is easy to verify that the following
graph, found by Benjamin Schoenberg, is a counterexample to
Conjecture 2 for  v = 4.  At present, I have no reasonable substitute for
this conjecture; efforts to find examples with  v = 4  and needing more
than six colors for any stable coloring have not been successful so far.
On the other hand, it is not certain that any finite number of colors will
be sufficient in all cases.  It would also be very interesting to investigate
whether there exist counterexamples to Conjecture 2 for values of  v
greater than  4 .  


