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A simple polygon  P  in the plane is a collection of  n ≥ 3  distinct
points  V1, V2, ... , Vn  (called vertices of  P) together with the  n  edges
(closed straight line segments)  V1V2,  V2V3, ... , Vn-1Vn, VnV1,  such
that the edges are pairwise disjoint except for adjacent edges having a
common vertex.  The well known polygonal Jordan theorem asserts that
the complement in the plane of each polygon  P  consists of two open
regions, the bounded interior of  P  and the unbounded exterior of  P.
The points  V1, V2, ... , Vn  constitute the vertex set of  P.  A segment  I
with endpoints in the vertex set of  P  is said to be a diagonal of  P  if the
relative interior of  I  is contained in the interior of  P;  analogously,  I is
an epigonal of  P  if its relative interior is contained in the exterior of  P.

It is easy to prove that:
(A)    Given any set  S  of  n  distinct points in the plane, not all

collinear, there is a simple polygon whose vertex set coincides with  S.  

We shall call such a polygon a Hamiltonian polygon of  S.  A
simple proof of assertion (A), illustrated in Figure 1, is as follows.
Given  S,  select a direction different from all the directions determined
by pairs of points in  S.  Assume this direction to be horizontal.  We
shall find two disjoint paths from the highest point  T  of  S  to the
lowest point  L,  with vertices in  S  and comprising all points of  S.
Since  S  is not contained in a line, at least one of the open halfplanes  D¬
and  Dr  determined by the line  D  through  T  and  L  must contain
points of  S;  without loss of generality we assume that  S  has points in
Dr.  Then the Hamiltonian polygon of  S  is the union of two descending
paths from  T  to  L;  one with vertices  S ( (D " D¬),  and the other
with intermediate vertices  T,  L  and  S ( Dr. ◊
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Figure 1.
Although this proof is quite trivial, assertion (A) is slightly tricky.  In

fact, it is sometimes incorrectly stated that any finite set of points admits
a simple polygon whose vertex set coincides with  S;  see, for example,
Mirzaian [3].  Such imprecision (leading to false statements) is not a
rarity in the literature of computational geometry.  But this should not
detract from the great value of the questions and results arising from the
new directions of inquiry that are motivated by the geometry of
computers and computer graphics.  Among earlier proofs of (A) I am
aware of is a complicated one by Gemignani [1], as well as a simple one
by the same author [2].

The main aim of the present note is to discuss certain analogs of
statement (A).  Some deal with the 3-dimensional situation, while in
others the point set  S  is replaced by a family of segments.  In particular,
one goal is to give wider circulation to an intriguing conjecture of
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Mirzaian [3], which will be formulated below as Conjecture 2.  We start
by stating the following fact, which will be used later:

(B)    The convex hull of  S  a finite set of distinct points of the
plane, not all collinear, has a triangulation  T  in which all vertices are
points of  S.  Moreover, given any family of segments with endpoints in
S  such that if any two of the segments intersect, the intersection is a
common endpoint, the triangulation  T  can be chosen so as to include all
these segments as edges.

A proof of (B) is immediate from the observation that if the given
segments do not determine a triangulation, another segment with
endpoints in  S  can be added which crosses none of the given ones.

Let now  S  be a family of  n  pairwise disjoint segments  Si = AiBi,
for  i = 1,2,...,n.  The vertex set of  S  is the set  {A1, ... , An, B1, ... , Bn}.
A simple (2n)-gon  P  is a circumscribing Hamiltonian of  S  if the
vertex set of  P  coincides with the vertex set of  S,  and every segment of
S  is either an edge or a diagonal of  P.  Analogously,  P  is a
noncrossing Hamiltonian of  S  if their vertex sets coincide and each
segment  Si  is either an edge or a diagonal or an epigonal of  P.  A
family  S  of segments is full-dimensional if there is no straight line that
contains all the segments in  S.

Mirzaian [3] formulated, among others, two conjectures that can be
stated (in slightly corrected versions) as follows;

Conjecture 1.    Every full-dimensional family of pairwise disjoint
segments admits a circumscribing Hamiltonian.

Conjecture 2.    Every full-dimensional family of pairwise disjoint
segments admits a noncrossing Hamiltonian.

While Conjecture 1 is clearly stronger than Conjecture 2, a
counterexample to it was soon found by Urabe and Watanabe [4].  This
counterexample is reasonably complicated, consisting of 16 segments.
A much simpler counterexample is shown in Figure 2; the easy
verification that the segments in Figure 2 contradict Conjecture 1 is left
to the reader.

On the other hand, Conjecture 2 seems to be well deserving of
attention, since neither counterexamples nor a proof appear to be easy to
find.  In fact, even the special case in which the segments are restricted to
be parallel to one of two directions is still undecided.
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Figure 2.

However, even Conjecture 1 has an affirmative answer under some
restrictions.  Mirzaian [3] stated the following result, and gave a rather
complicated proof under additional assumptions made in order "[t]o
simplify the discussion"; however, it seems that removal of these
assumptions from his proof is not straightforward.

(C)    If  S  is a full-dimensional finite family of disjoint segments in
the plane, such that each segment has at least one endpoint on the
boundary of the convex hull of the union of all segments in  S, then  S
admits a circumscribing Hamiltonian.

A simple proof of (C) is as follows.  Let  C  denote the boundary of
the convex hull of the union of all the segments  Sj. In the illustrative
example if Figure 3  C  is shown by dotted lines, while thin solid lines
mark the part of the circumscribing Hamiltonian  H  of  S  that is being
constructed.  Advancing along  C  in counterclockwise sense starting
from an arbitrary point, we shall construct the  H  while completing one
circuit around  C.  As we meet an endpoint of a segment  Sj  in  S,  there
are two possibilities:

(i)    Either the other endpoint of  Sj  also belongs to  C,  or to the
part of  H  that has already been constructed;  in this case we continue
along  C.  The situation is illustrated by the segment marked  2  in
Figure 3.

(ii)   Or else, the other endpoint of the segment  Sj  just encountered
does not belong to  C  or to the part of  H  already constructed.  (For
example, consider segments 3, 4, 5 or 6.)  Thinking of the just traversed
part  of   C   (from  the  last  endpoint  of  a  segment  Sj-1  we
encountered, to the newly met endpoint of  Sj) as a rubber band, we
stretch it so as to reach the far endpoint of  Sj.  In doing so we may have
to stretch the rubber band around the endpoints of one or several other
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Figure 3.
segments.  For each of the latter endpoints, if it has already been visited
by the part of  H  previously constructed, we "detach" that earlier section
of the rubber band, and let it contract as far as possible without getting
detached from any other endpoint.  (In Figure 4, this happens when
reaching each of the segments labelled  4  or  5.)  ◊

It should be noted that the circumscribing Hamiltonian constructed
by this method has the property that each of its points is the endpoint of
an open ray (halfline) that is contained completely in the exterior of  H.
In other words,  H  is completely visible from the outside.
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There seems to have been no mention in the literature of
3-dimensional problems analogous to most of the questions discussed
above.  A few rather immediate generalizations come to mind.

By sphere-like polyhedron  P  we mean a collection of planar
polygonal regions (each a union of a simple convex polygon and its
interior) called faces of  P,  such that any two of the faces meet, if at all,
either along an edge of each, or at a vertex of each; moreover, the union
of all the faces is homeomorphic to the 2-dimensional sphere (the
boundary of a solid ball).  The vertices and edges of the faces of  P  are
also said to be vertices and edges of  P.  The set of all vertices of  P  is
its vertex set.  A sphere-like polyhedron  P  is simplicial if all its faces
are triangles.

If  S  is a set of distinct points such that the vertex set of a sphere-
like polyhedron  P  coincides with  S,  we say that  P  is a Hamiltonian
polyhedron for  S.  The following is an analog of the planar result (A):

(D)    If  S  is a set of distinct points, not all of which are coplanar,
then there exists a simplicial Hamiltonian polyhedron  P  for  S.

A proof of this assertion is more complicated than in the planar case,
although may be seen to follow similar lines.  To begin with, given  S
we select a plane  Q  such that no two points  of  S  belong to a plane
parallel to  Q  and no two points of  S  are on a line parallel to the
direction  L  perpendicular to  Q;  for ease of expression we assume  Q
to be horizontal.  Let  B  be the shadow boundary of the convex hull
conv S  of  S  in direction  L,  and let  C = conv B.  Although the
reasoning is similar in both cases, it is convenient to distinguish the case
in which  C  is 2-dimensional from the one in which  C  is
3-dimensional.  

In the former case, let  H  be the plane that contains  C;  then at least
one of the open halfspaces  H¬  and  Hu  determined by  H  contains
points of  S.  Without loss of generality assume that  Hu  contains some
points of  S.  Let  S¬ = S ( (H " H¬), and  Su = S (  (B "  Du),  and
let  P¬  and  Pu  be the projections of  S¬  and  Su  parallel to  L  onto the
plane  H.  By statement (B), the convex hulls of  P¬  and  Pu  can be
triangulated without introducing any new vertices, and respecting the
projections of the relevant edges of  C; a slight strengthening of (B),
which we shall not stop to prove, shows that the triangulation of the
convex hull of  Pu  can be chosen so that no triangle has all three vertices
in  B.  "Lifting" these triangulations from P¬  and  Pu  to  S¬  and  Su,
and taking the union of these two polyhedral surfaces,  yields the desired
simplicial Hamiltonian polyhedron for  S.
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In case  C  is 3-dimensional, we proceed similarly.  Let  C¬  and  Cu

be the lower and upper parts of the surface of  C, with common

boundary  B;  if one of  C¬  and  Cu  is contained in a plane, we assume

that this is  C¬.  We denote by  S¬  the set of points of  S  that are on  C¬

or below  C¬,  and by  Su  the set of points of  S  that are on  B  or above

C¬.  Let  P¬  and  Pu  be the orthogonal projections of  S¬  and  Su  onto

the plane  P.  By statement (B), the convex hulls of  P¬  and  Pu  can be

triangulated without introducing any new vertices and without crossing

the projection of any segment that is an edge of  C¬  or  Cu, respectively.

As before, we may assume that the triangulation of the convex hull of  Pu
is chosen so that no triangle has all three vertices in  B.  "Lifting" these
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triangulations from P¬  and  Pu  to  S¬  and  Su,  and taking the union of

the resulting two polyhedral surfaces,  yields the desired simplicial
Hamiltonian polyhedron for  S.  The polyhedron  P  is sphere-like, since

its lower part is not above  C¬,  and its upper part is strictly above  C¬

everywhere but along the common boundary  B. ◊
We conclude with several open problems.
Conjecture 3.    Given any finite family  S  of disjoint segments in

the 3-dimensional space, not contained in any plane, there exists a
simplicial Hamiltonian polyhedron  P  for the vertex set of  S  such that
each segment in  S  is either an edge, or a diagonal or an epigonal of  P.

Conjecture 4.    Given any finite family  S  of distinct points in the
d-dimensional Euclidean space, not contained in any hyperplane, there
exists a simplicial polyhedron  P  homeomorphic to the  (d-1)-
dimensional sphere, such that the vertex set of  P  coincides with  S.

It may be noted that a difficulty of extending the proof of (D) to a
solution of Conjecture 4 arises from the fact that it is not clear in what
form Statement (B) generalizes to higher dimensions.

References.
[1] M. Gemignani, On finite subsets of the plane and simple closed
polygonal paths. Mathematics Magazine 39(1966), 38 - 41.
[2] M. Gemignani, More on finite subsets and simple closed
polygonal paths.  Mathematics Magazine 39(1966), 158 - 160.
[3] A. Mirzaian, Hamiltonian triangulations and circumscribing
polygons of disjoint line segments. Computational Geometry: Theory
and Applications  2(1992), 15 - 30.
[4] M. Urabe and M. Watanabe, On a counterexample to a
conjecture of Mirzaian. Computational Geometry: Theory and
Applications  2(1992), 51 - 53.


