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Infinite polyhedra are an interesting but poorly explored family of surfaces.  By

infinite polyhedron  P  we mean an infinite collection of planar convex polygons, such

that each side of each polygon is also a side of precisely one other polygon.  The polygons

are called faces of  P,  the common sides are the edges of  P, their endpoints –– vertices

of  P.  Without additional mention, we will assume that the following conditions are

satisfied by all polyhedra considered:

( i ) The intersection of any two faces of  P  is either empty, or a vertex of  P ,

or an edge of each of  P.

( i i ) All faces that contain a given vertex form a simple circuit.

( i i i ) From any face one can get to any other face by moving from face to face

across common edges.

( i v ) Each bounded region of the space meets only a finite number of faces.

Clearly, except for the assumption that the number of faces is infinite, these

conditions are the same as one imposes on polyhedra in the usual sense. (Note that by

"polyhedron" we mean "polyhedral surface", and not "solid".).

It is easy to verify that any planar tiling is an "infinite polyhedron", but there

are many others that are of interest.  In fact, we shall be mainly interested in infinite

analogues of the "uniform" or "Archimedean" polyhedra.  However, the following

definitions apply equally to finite and to infinite polyhedra.

A polyhedron  P  is vertex-transitive (resp. edge-transitive, face-transitive,

flag-transitive) if the group of isometric symmetries of  P  acts transitively on the

vertices (resp. edges, faces, flags) of  P.  (A flag of a polyhedron  P  is a triplet

consisting of a face of  P,  and edge of that face, and a vertex which is an endpoint of the
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edge.)  A polyhedron  P  is uniform if it is vertex transitive and all the faces are regular

polygons;  P is regular if it is flag-transitive.  It is Archimedean if all the faces are

regular polygons and for any two vertices the figure formed by the faces containing the

vertex are congruent.  Thus uniform polyhedra are Archimedean, but Archimedean

polyhedra are not necessarily uniform.  The "pseudorhombicuboctahedron" discovered by

J. C. P. Miller (see Ball and Coxeter [4, page 138]) and by Ashkinuze [3] is the only

such example among finite Archimedean polyhedra; see Figure 1.

Figure 1.  The uniform rhombicuboctahedron and the Archimedean (but not uniform)

pseudorhombicuboctahedron.

An infinite polyhedron that is Archimedean but not uniform can be built from the

(infinitely extended) "modules" shown in Figure 2; it is shown on page 60 of Wachman

et al. [7].  The vertical modules are formed by squares, the horizontal ones by squares

and equilateral triangles; both kinds have square holes in front and back.  Infinitely

many modules of the two kinds should be so interwoven (in alternate layers) that the

square holes in each each are matched by square holes in the other kind.  It is easily seen

that since the horizontal modules admit no reflective symmetries with vertical mirrors,

uncountably many infinite Archimedean polyhedra can be constructed in this way.

From now on we shall discuss only polyhedra that are infinitely extended in three

independent directions; in fact, we shall assume that they are periodic in three such

directions.

Coxeter [5] proved that there are precisely three regular infinite polyhedra of

this type.  Denoting any Archimedean polyhedron by the cyclic sequence of the numbers

of sides of the polygons that meet at each vertex, Coxeter's regular infinite polyhedra are

(4 ⋅4 ⋅4 ⋅4 ⋅4 ⋅4) = (46)  with six squares at each vertex,  (6⋅6 ⋅6 ⋅6) = (64),  and

(6⋅6 ⋅6 ⋅6 ⋅6 ⋅6) = (66).  (We use exponents in an obvious way in order to shorten the

symbols.)  Making models of (finite parts of) these polyhedra is a very interesting
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project.  In the hope that the reader will be challenged to construct such models, we

provide here no diagrams.

Figure 2.  Two "modules" which can be used to construct infinitely many distinct infinite

Archimedean polyhedra that are not uniform.

Many non-regular uniform infinite polyhedra are known; ApSimon [2] presents

three examples, and Gott [6] shows several.  Wachman et al. [7] describe and illustrate

a very large number of such polyhedra; however, they fail to notice that many of the

types lead to infinitely many pairwise incongruent polyhedra, as explained below.

Theoretical chemists have long been interested in infinite uniform polyhedra (Wells

[8]), and recently it seems their investigations acquired practical importance (Alper

[1]).

An infinite uniform polyhedron (312), at each vertex of which meet 12

equilateral triangles, has been described by many authors.  It is even face-transitive.

Other infinite uniform polyhedra with only equilateral triangles as faces are also known

(see, in particular, Wachman et al. [7]):  one (37), three distinct (38), five distinct

( 39), four distinct (310) .

Conjecture 1. There are no uniform polyhedra with equilateral triangles as faces

other than the 14 mentioned in the preceding paragraph.
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The most interesting part of the above is the question whether any uniform

polyhedron can have more than 12 triangles meeting at each vertex.  We venture even

the stronger

Conjecture 2. There are no uniform polyhedra such that each vertex belongs to

more than 12 faces.

There are at least eleven different uniform polyhedra with eight faces meeting at

each vertex; three of these have only triangles as faces.  The remaining eight contain

triangles as well as faces with more sides.

Conjecture 3. If each vertex of a uniform polyhedron is incident with more than

eight faces then all the faces are triangles.

Wachman et al. [7] described a uniform polyhedron (62.82) .

Conjecture 4. No uniform polyhedron exists in which all faces have more than

six sides.

Although there are many types of infinite Archimedean polyhedra that are not

uniform, it seems likely that all these conjectures hold for Archimedean polyhedra as

well.

There are many uniform polyhedra in which all faces are squares, meeting by

fives at each vertex, or else meeting by sixes.  One uniform polyhedron  ( 45)  which

seems not to appear in the published literature, can be desribed as follows.  Consider

infinite solid prisms with unit square cross-sections, and with axes parallel to the x -

axis, spaced one unit apart, in horizontal layers at heights 0, ±4, ±8, ±12, ..., while

analogous sets of prisms parallel to the y-axis form layers at heights ±2, ±6, ±10, ... .

At all odd heights, these layers of prisms are connected by solid unit cubes.  The union of

the prisms and cubes (which occupies only 3/8 of the space) has as its boundary the

unifom polyhedron  (45)  we wanted to describe.  An exploded view of the three kinds of

modules used in the construction is shown in Figure 3; the dotted line indicates how the

modules fit together.
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Figure 3.  The modules that can be put together as explained in the text, to obtain a uniform

polyhedron (45).

Two representatives of a family of uniform polyhedra (45) that depends on a

real-valued parameter are shown in Figure 4.  Cardboard models of these polyhedra can

be deformed into each other by continuous motions.  The polyhedra are obtained by

stacking copies of the "slabs" shown.  The polyhedron in part (a) is shown on page 50 of

Wachman et al., while the one in part (b) appears to be new, as is the observation that

they are both part of a continuous family.  Another movable family of uniform polyhedra

( 45) results from the one in Figure 4 by shifting one half of the "connecting passages"

one square up (for example, the columns marked by arrows in Figure 4 may be shifted

one square up to obtain representatives of that family).  Polyhedra in the second family

corresponding to those in Figure 4 are shown in Wachman et al. on pages 16 and 20, but

with no indication ot the relation between them.  A third family of movable uniform

polyhedra consists of polyhedra of type (46).  One of its members is the regular infinite

polyhedron (46) mentioned above.  As noted by Ball and Coxeter [3, p.153] this

polyhedron is not only movable but may be collapsed to a plane.

Conjecture 5. There are no movable families of uniform polyhedra besides the

three described above.
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(a)

(b)

Figure 4.  Two polyhedra in a continuous family of infinite uniform polyhedra (45).  The various

representatives can be obtained by moving the "columns" marked by arrows in their top

squares in the direction of the arrows (or in the opposite direction).  Another continuous family

can be obtained by shifting the same "columns" one square up.
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We conclude by mentioning the probably most surprising of all infinite uniform

polyhedra, the polyhedron ( 55) discovered by Gott [6] (and missed by all other

investigators of infinite uniform polyhedra).  We shall leave to the reader the pleasure

of constructing a model of this polyhedron; as a helpful hint we mention that it i s

convenient to start with a generous supply of strips like the one shown in Figure 5.

Figure 5.  Strips that are convenient to use in the construction of the uniform infinite

polyhedron (55).

Clearly, all the problems about infinite uniform polyhedra raised above can be

subsumed in the question of a complete enumeration of such polyhedra.  This seems to be

a hard –– but not hopeless –– problem.  More generally, it would seem both desirable

and interesting to study all the vertex-transitive infinite polyhedra periodic in three

independent dimensions, or the analogous edge-transitive, or face-transitive polyhedra.

Concerning the latter two, the literature seems to contain no information whatsoever.
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