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Abstract

In many contexts, selfdual objects (which are both isomorphic and dual to

themselves) are of special interest. The concept of rank  of a selfdual ob-

ject has recently been introduced, and the question was raised whether

there exist selfdual objects of rank greater than 2. Extending results ob-

tained by other workers we show that the answer is affirmative for con-

vex polyhedra, for planar tilings, and for configurations of points and

lines in the projective plane. However, the detailed answers are different

in the three cases, and also depend on various natural conditions that may

be imposed.

1. Introduction. The concept of duality occurs in almost every branch of

mathematics. While isomorphism preserves certain relations between the math-

ematical entities under consideration, duality reverses them.  In this paper we shall be

concerned with duality in three particular contexts:

( i ) tilings of the Euclidean plane;

( i i ) polyhedra in the Euclidean space of three dimensions; and

( i i i ) configurations of points and lines in the projective plane.
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Other areas in which duality occurs abound -- for example, vector spaces and topologi-

cal graph theory -- but these will not be discussed here.

In every situation it is interesting to look for those special objects in which iso-

morphism and duality occur simultaneously. These are said to be selfdual. Again it i s

possible to find many familiar examples with this property: the regular tiling of the

Euclidean plane by squares; three-dimensional convex pyramids; the configurations of

Pappus and Desargues in projective geometry. Also, Euclidean spaces and, more gener-

ally, all complete normed inner-product spaces are selfdual.

In spite of the fact that selfduality is so familiar and has been investigated for

well over a century, one aspect of it escaped attention until very recently.  In a short

note published in 1988 (Grünbaum & Shephard [1988]) the rank  of a selfduality was

defined, and some questions about its possible values were raised. (The rank, which w i l l

be formally defined in the next section, is simply the order of the selfduality regarded as

a mapping.) This note spurred interest in the area and led to a number of new results.

The only publication so far is Jendrol [1989], which described a polyhedron with 14

vertices and rank 4. This example is shown in Figure 25, and its significance will be

explained below. Other examples and related results have been circulated informally, or

are in the process of being published (see Archdeacon & Richter [1989], McCanna

[1989], McKee [1989], Servatius et al. [1989]). It is the aim of this note to present

some new results and to point out some of the intriguing problems that are still open.

The paper is organized as follows. In Section 2 we introduce the necessary te r -

minology in a general context, illustrated by reference to a familiar polyhedron. In p a r -

ticular, we introduce the concept of the selfduality group of a given geometric structure;

this is the group whose elements are the automorphisms and selfdualities admitted by the

structure being investigated. Section 3 is devoted to selfdual tilings, and in Section 4 we

are concerned with selfdual polyhedra and show how selfdual tilings may be used to con-

struct them. In each case the possible symmetry groups will be investigated. In Section 5

we discuss selfdual configurations in the projective plane, while the final section is de-

voted to remarks and open problems. Throughout we find it interesting to consider not

only the full selfduality groups, but also the subgroups that arise by limiting attention

to isomorphisms and selfdualities that are induced by geometrically interesting map-

pings.
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2.  Terminology.   Although our interest is in geometric applications we begin

by presenting the fundamental definitions in the more abstract context of partially o r -
dered sets.  If  F  and  F'  are partially ordered sets, then an isomorph ism  α : F Ø F'

is a bijection which preserves the ordering; that is,  x < y  (in F) if and only i f
α(x) < α(y)  (in F').  A dual ity  δ : F Ø F'  is a bijection which reverses the o r -

dering; that is,  x < y  if and only if  δ(x) > δ(y). A duality or isomorphism from  F  to  F

is called a selfduality or automorphism of  F , respectively. If  δ  is a selfduality of
F  then   δ2 = δ Î δ  is an automorphism.

The rank of a selfduality  δ, denoted by  r(δ), is its order or period  --  in other

words,  r(δ)  is the least positive integer  r  for which   δr   is the identity; if there is no
such integer then we define  r(δ) = ∞ . We say that  F  is  selfdual if  F  admits at least

one selfduality, and in that case we define the r ank  of  F , denoted by  r(F), as the

smallest  r  such that  F  has a selfduality of rank  r. If  r(F)  is finite then it must be a

power of  2; for if  F  admits a selfduality  δ  of rank  2kn  for some odd   n > 1, then  δn

is a selfduality of smaller rank  2k.

The automorphisms of  F  form a group called the automorphism group,  A(F).

The selfdualities and automorphisms of  F  together form a group which we call the

selfduality group of  F  and denote by  D(F).  If  F  is not selfdual then  D(F) = A(F),

but if  F  is selfdual then  A(F)  is a subgroup of index  2  in  D(F).  For selfdual  F, the

rank  r(F)  equals the minimal order of the elements of  D(F)  that are not in  A(F).  I t

is easily verified that  D(F)  is isomorphic to a well-determined subgroup of
A(F  F*), where   F  F*  is the disjoint unordered union of  F  and a partially o r -

dered set  F*, which is isomorphic to the set obtained from  F  by reversing the order.

We may think of  F  and of  F*  as of two different "colors" -- then elements of  A(F)

preserve the colors, whereas the elements of  D(F)  not in  A(F)  reverse them. In this

way  D(F)  can be regarded as a "2-color group". In the case of the Euclidean plane, the

discrete 2-color groups are well known (see Grünbaum & Shephard [1987], Chapter

8), and it would be interesting to determine which of them can actually occur as repre-

senting selfduality groups.

In a geometric context, let us first consider convex polyhedra in ordinary

Euclidean space  ƒ3. If  P  is such a polyhedron, then its proper faces (of dimension 0, 1 ,

or 2) form a set which is partially ordered by inclusion; we call it the face lattice of
P, and denote it by  FP.  All of the definitions given above for partially ordered sets can

be applied to  FP, and we may, without possibility of confusion, use the same terms for
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the polyhedra themselves. For example, an isomorphism from  FP  to  FQ  can also be

called an isomorphism (or "combinatorial isomorphism", or "combinatorial equiva-

lence") from  P  to  Q .  A duality  δ  of  P  maps 0-dimensional faces (that is, vertices)

to 2-dimensional faces, and vice versa. (The action of  δ  on the 1-dimensional faces

(edges) is determined by its action on the 0- and 2-dimensional faces, so we do not need

to specify it separately.) It will be convenient and should cause no confusion if the auto-
morphism and selfduality groups   A(FP)  and  D(FP)  of  FP  are denoted  A(P)  and

D(P), respectively.

As an illustration of these concepts, consider the six-sided pyramid  P  with apex
A , base  B , base-vertices  F1, F3, …, F11, and mantle-faces  F2, F4, …, F12, shown i n

Figure 1.  A selfduality  δ  of  P  is defined by  δ(A) = B ,  δ(B) = A ,  δ(Fj ) = Fj+1 (for j

= 1,..., 12 ). It is clear that  r(δ) = 12  and that  δ3  is also a selfduality of  P,  with

r(δ3) = 4.  We note that  P  has other selfdualities; for example, the selfduality  ε   de-
fined by   ε(A) = B ,  ε(B) = A ,  ε( Fi) = Fj   if and only if  i + j = 13  has rank  2 ,

hence  r(P) = 2.  Some additional checking shows that  δ  and  ε  generate the selfduality
group  D(P)  of  P, which is (isomorphic to) the dihedral group  D1 2  of order 24.

Also,  A(P)  is (isomorphic to) the dihedral group  D6  of order 12. More generally, i f

Pn  denotes the  n-sided pyramid then  A(Pn)  is (isomorphic to) the dihedral group  Dn
and  D(Pn)  to  D2 n. (In Section 4 we shall give a more instructive description of

D(Pn).) It can be verified easily that every pyramid has rank  2;  in fact, a l l  selfdual

polyhedra described in the literature prior to 1988 are of rank  2.

If a polyhedron  P  has a selfduality of rank  2, then a simple way of indicating

this selfduality is by balanced labelling, that is by assigning the same symbol to any

vertex and to the face corresponding to it by the selfduality.  (Similar considerations

apply to other partially ordered sets.)  For the selfduality  ε  of the six-sided pyramid  P

discussed above a balanced labelling is indicated in Figure 2.  It is remarkable -- from

mathematical as well as from psychological and sociological points of view -- that due to

a confusion of concepts, many of the authors who defined selfduality in the same way as i t

is defined here, nevertheless treated it as if selfduality were equivalent to the existence

a balanced labelling (see Grünbaum & Shephard [1988] for references to instances of

this phenomenon); hence they could not even consider the possibility that selfdualities of

rank higher than  2  might exist.  It is true that some writers did not make this logical

error; instead, they defined selfduality as meaning the existence of a balanced labelling.
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Besides being inappropriate terminology, such an approach only avoids the difficulties

and does not lead to any insights into the nature of the problem.

In the sequel, we shall adopt the very convenient balanced labelling whenever i t

is appropriate, that is, for indicating a selfduality of rank 2. For selfdualities  δ  of rank

n  it is convenient to use a letter with subscripts for elements which arise as images

under  δ  and its powers, thus
Ø  An-1  Ø  A0  Ø  A1  Ø  A2  Ø  ...

where the odd subscripts relate to points, and the even subscripts to other elements

(tiles, faces of a polyhedron, lines in the projective plane, and so on). In this notation, i f

m is any odd integer then
δm:  Aj   Ø  Aj+m  (mod n)

is also a selfduality, but -- as can be seen from the example of the hexagonal pyramid

given above -- in general not all selfdualities can be expressed in this way.

To avoid confusion we should stress that when treating polyhedra, tilings and

other objects of our consideration as combinatorial entities, then the various groups de-

fined above will be regarded as abstract groups. In constrast, when considering the ge-

ometry of these objects, the groups will be groups of isometries or other geometric

transformations. This will be reflected in the terminology as well as in the notation.

3. Selfdual tilings. Throughout, and without any further explicit statement of
the fact, we shall limit attention to tilings  T  of the plane that are well-behaved in the

sense that they are normal. This means that each tile is a closed topological disk, the

diameters of the tiles are uniformly bounded from above, their inradii are uniformly

bounded from below, and the intersection of any two tiles is either empty, or a single

point, or a single arc (see Grünbaum & Shephard [1987], Chapters 3 and 4, for a d is -

cussion of these requirements and their consequences; throughout, we shall use the te r -

minology of this book).

Since the vertices, edges and tiles of a tiling  T  form a set  FT  partially ordered

by inclusion, the definitions of automorphisms, selfduality, and the other concepts i n -
troduced above apply to  FT .  However, the geometric context suggests that besides the

groups  A(T )  and  D(T ),  various subgroups are of interest. This leads to other mean-

ings of "selfduality", for which we have to develop an appropriate terminology. To begin
with, if  FT   is selfdual as defined above, then we shall say that  T   is comb i na to r i -
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ally selfdual. Using well-known techniques of map-extension (see Sections 4.1 and
4.2 of Grünbaum & Shephard [1987]), it can be shown that  T  is combinatorially

selfdual if and only if there exists a tiling  T*  of the plane such that  T*  is a homeo-

morphic image of  T, and each tile of  T  or  T*  contains precisely one vertex of the

other tiling in its interior, and that each edge of each of the tilings crosses, at a single
point, precisely one edge of the other tiling. Two tilings  T  and  T*  related in this way

are said to be dually situated or in dual posit ion, and we may say that  T  and  T*

are topologically dual. (The tilings in Figures 3 and 4 can serve as illustrations.)

However, as the concepts of selfduality in the discrete (combinatorial) sense and in the

continuous (topological) sense coincide, we do not need new terminology for this situa-
tion. On the other hand, given a selfdual tiling  T, it is not always possible to find an

isometric image  T*  of  T  such that  T  and  T* are in dual position (see, for example,

Figure 5). If this can be done (as it can, for example, in the case of the regular tiling by
squares, or the tilings in Figures 3 and 4) then we say that  T  and  T*  are m e t r i c a l l y

selfdual .

Since tilings have infinite numbers of faces and vertices, the rank of a selfduality
of a tiling is not necessarily finite; in fact, the rank  r(T)  of a tiling can be infinite.  As

an example, consider the periodic tiling  T  shown in Figure 3a, obtained by a systematic

modification of the square tiling. It is easy to verify that  T  admits a metric selfduality

(illustrated by the tilings  T  and  T*  in dual position shown in Figure 3b); moreover,

T  has the property that if  δ  is any combinatorial selfduality of  T  then  δ  can be e x -

tended to a metric selfduality of  T, such that  δ2  is a non-trivial translational symme-
try of  T.  Hence  r(T ) = ∞ .  As demonstrated by its labelling, the tiling  T  shown i n

Figure 4a has a combinatorial selfduality of rank 4; in fact, as shown by Figure 4b this

is a metric selfduality of rank 4.  Moreover, it is easy to show that every combinatorial
selfduality of  T  is of rank at least 4, and hence   r(T) = 4.

Theorem 1. The rank of any combinatorially selfdual tiling of the plane is e i -
ther 2, or 4, or  ∞ . For each of these ranks there exist tilings which are metrically

selfdual.

Proof. The tilings shown in Figures 3 and 4, and the square tiling are metrically
selfdual of rank   ∞, 4  and  2, respectively, and hence establish the second part of the

theorem. For the first assertion we assume that the rank  r = r(δ)  of a combinatorial
selfduality  δ  of a tiling  T  is finite. We shall then show that  r  must be either 2 or 4.
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To see this, let  T  and  T*  be in dual position, and  T  be the tiling formed by

superposition of  T  and  T* (this is illustrated in Figures 3b and 4b).  This means that

each tile of  T  is a quadrilateral (that is, has four adjacent tiles), its edges are the

"halfedges" of  T  and the "halfedges" of  T*, and its vertices comprise the vertices of  T ,

the vertices of T*, and the intersection-points of pairs of edges, one from  T, the other

from  T* . We shall refer to  T  as the dual superposition tiling of  T  (or of  T*).

For each selfduality  δ  of  T  we shall define a homeomorphism  φ  of the plane

which maps the tiling  D  onto itself (see Figure 6(a)). Let  P  be any vertex of  T. Then

δ(P)  is a tile of  T  which contains in its interior a unique vertex  P*  of  T*, so we de-

fine  φ(P) = P*.  A vertex  Q*  of  T*  is contained in a unique tile of  T  which,  by  δ ,

maps into a vertex  Q  of  T, so we define  φ(Q*) = Q .  If  P  and  Q*  are "opposite"

vertices of a tile  F1 of  D  then  P*  and  Q  are "opposite" vertices of a tile  F2  of  T.

Since  δ  maps the edges of  T  incident with  P  onto the edges of the tile of  T  containing

P*, and these correspond to the edges of  T*  incident with  P*, we may define the image

under  φ  of an edge  PR  of  F1  (a "halfedge" of  T) to be the corresponding edge  P * R *

of  F2.  In a similar way, each of the other edges  RQ*,  Q*S  and  SP  of  F1 are mapped

by  φ  onto the edges  R*Q,  QS*  and  S*P*  of  F2.  By map-extensions (Grünbaum &

Shephard [1987], Sections 4.1, 4.2)  φ  can be extended to a homeomorphism of the
whole plane onto itself, and by construction  φ(D) = D.  Moreover, it is clear that  φr   i s

the identity if and only if  δr   is the identity -- they are necessarily maps of the same

order.

For any tile F of D consider the union of the images of  F  under  φ  and its powers.

If δ is of finite order r, then so is φ and this set may be written G = (0≤n<r φn(F). If C

is any finite union of tiles of D which is connected and contains  G, then  H = (0≤n<r
φn(C)  is also a finite connected set of tiles of  D, which is invariant under  φ.  It is pos-

sible that  H  is not simply connected, in which case we augment  H  by adjoining a finite

number of tiles (to fill up the "holes") to form a set  J  which is connected and simply

connected. Clearly  J  is also invariant under  φ.  By the Brouwer Fixed Point Theorem

(see, for example, Alexandroff-Hopf [1935], Satz IIa on page 480, or Eilenberg-

Steenrod [1952], Theorem 3.3 on page 301),  J  contains a point  X  which is fixed u n -

der  φ.  The remaining part of the proof is divided into two cases, depending on whether  X
belongs to the interior or to the boundary of a tile  F  of  D.  Let  F  have vertices  PRP*S

in order, where  P  and  P* are vertices of  T  and  T*  respectively, and each of  R,  S

is a point of intersection of an edge of  T  with an edge of T*.
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Case 1.  X  is an interior point of the tile  F  of  D   (see Figure 6(b)).  Since   φ

must map  F  onto itself, it follows that  φ(P) = P*  and  φ(P*) = P.  Also,  φ  either i n -

terchanges  R  and  S, or else leaves them invariant. In either case,   φ2(R) = R  and
φ2(S) = S. Therefore  φ2,  and hence also  δ2,  is the identity on  D, and hence also on  T ;

thus, in Case 1 we have  r(T) = r(δ) = 2.

Case 2.  X  lies on the boundary point of the tile  F  of  D. Since  φ  maps  PR  onto

P*R  and  PS  onto  P*S,  it is clear that  X  cannot be an interior point of an edge of  F ;

hence let us suppose it coincides with  S  (see Figure  6(c)) and so is the intersection of
the edge  PQ  of  T  with the edge  P*Q*  of  T*.  Since the edges  PS,  P*S,  QS,  Q*S  of

D  (halfedges of  T)  must be permuted by  φ  and since  φ(P) = P*,  there are only two

possibilities:  either  φ(P*) = P,  φ(Q) = Q*  and  φ(Q*) = Q, or else  φ(P*) = Q ,

φ(Q) = Q*  and  φ(Q*) = P.  In the first case  φ2  is the identity, and therefore so is  δ2,
hence  r(δ) = 2  and  r(T) = 2.  In the second case  φ4  is the identity, hence so is  δ4,

and  r(δ) = r(T) = 4.

Since these cases cover all possibilities we deduce that  r(T)  is  2  or  4, and so

Theorem 1 is proved.   ·

A tiling is called per iodic if it admits as symmetries translations in two inde-

pendent directions. Although Theorem 1 applies to any selfdual normal tiling of the

plane, the examples cited to establish the second assertion of the theorem show that the

three possible ranks  (2,  4,  ∞)  can each be realized even with periodic tilings.

It is well known that the symmetry groups of periodic tilings fall into 17 classes.

These are often called "wallpaper groups" (see, for example, Grünbaum & Shephard

[1987], Section 1.4) and it is convenient to denote them by their "international c rys-

tallographic symbols". In the following, some familiarity with these groups and their

notation is assumed.

Our next objective is to determine the possible symmetry groups of selfdual t i l -

ings.

Theorem 2.  A periodic selfdual tiling  T  can have symmetry group  S(T)  of

one of the classes  p1,  p2,  p4,  pm,  pg,  cm,  pmm,  pmg,  pgg,  cmm,  p4m  or

p4g.  It cannot have a symmetry group of any of the remaining classes   p3,  p31m,

p3m1,  p6, or  p6m.
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Proof.  The first part of the theorem is established by the existence of the tilings

in Figure 7(a) to 7(l). Each of these is obtained by modifying the square tiling (which

has symmetry group  p4m)  using the construction described (for polyhedra) by K i r k -

man [1857] (see also Brückner [1900], p. 93). This states that if a selfdual object i s

changed in a way that is compatible with any particular duality (that is, by making dual

changes at dually corresponding elements), then the resulting object will also be self-

dual.

For the second part of the proof we need to deal with each of the five classes of

groups separately. We give full details in two cases.

Class p6.  Here the centers of 6-fold rotational symmetry (or 6-centers, as we

shall call them) are arranged in the form of an "equilateral triangle lattice" (or "dot

pattern of type DPP51"  in the notation of Grünbaum & Shephard [1987], Section 5.3).

See Figure 8(a) where these centers are denoted by small hexagons. Construct the regu-
lar hexagonal tiling  H  (which is a Dirichlet tiling for the 6-centers) as shown in the

diagram; the 6-centers are the centers of the hexagonal tiles. Now suppose  T  is a self-

dual tiling whose symmetry group of class  p6 has this set of 6-centers in its group

diagram (see Grünbaum & Shephard [1987], Section 1.4); we shall show that this as-

sumption leads to a contradiction. Since the 6-centers are all of "one kind", that is, they

form one transitivity class under the group, there are two possibilities:
( i ) each 6-center is a vertex of  T  of valence  6n  (n ≥ 1); or

( i i ) each 6-center is the center of a 6m-gonal tile of  T (with  m > 1).

For case  (i), the selfduality  δ  of  T  whose existence is assumed must map the

vertex  V  at a  6-center into a  6n-gon  Q, and we consider the possible positions of  Q
relative to a hexagon  H  of  H.  If  Q  is interior to  H  (as  Q1 in Figure 8(a)) then the

operations of the group  p6  will map this into five other tiles equivalent to  Q; hence  H

will contain at least six copies of tiles equivalent to  Q. If  Q  straddles an edge of  H  (as
in  Q2 , say) then the operations of  p6  (the 6-fold rotations about the center of  H, and

the halfturns about the midpoints of the edges of  H ) will map the parts of  Q2  in  H  and

outside  H  into parts of other tiles which together amount to a total of either three or s ix

tiles of the transitivity class of  Q  contained in  H. The former case arises if  Q  contains

the midpoint of the edge of  H, the latter if it does not contain the midpoint. If  Q  contains
a vertex of  H  (as  Q3, say), then  H  contains one-third of  Q  and, by symmetry,  five

other one-third parts of tiles equivalent to  Q, making a total of two copies of  Q  (actu-

ally six one-third copies) in  H.  Now  δ  maps each vertex  V  into just one tile  Q, and
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the hexagons are in one-to-one correspondence with the vertices. It follows that each

hexagon must contain precisely one copy of  Q. As we have seen, this does not happen;

whatever the position of  Q  at least two copies lie in  H. This contradiction shows that

case  (i)  cannot occur.

Case  (ii)  is dealt with similarly. We consider the possible positions of the  6 m -

valent vertex which is the image of the  6m-gon  Q  under  δ.  According to the position of

that vertex relative to  H  there are either  six, three or two copies of it in  H.  Again a

contradiction is reached, since an argument analogous to the one given above shows that

each  H  must contain precisely one such vertex.

Class p6m. The argument here is exactly similar except that in this case the

number of elements (vertices of valence  6n  or  6m-gons) in  H  is either  2, 3, 6 or

12.

Class p3. The centers of 3-fold rotational symmetry (the 3-centers) form
a triangular lattice; see Figure 8(b) where they are indicated by triangles. Suppose  T

is a selfdual tiling whose symmetry group has this group diagram; we shall show this

assumption leads to a contradiction. The 3-centers are of three kinds (belong to three

transitivity classes under the group) as indicated by the symbols in the diagram. For the
centers indicated by solid triangles we construct the hexagonal tiling  H  whose vertices

are the 3-centers of the other two kinds. This tiling is indicated by the dotted lines in the

diagram. Consider the possibilities:
( i ) each 3-center indicated by a solid triangle is a vertex of  T  of valence  3n

(n≥1); or

( i i ) each 3-center indicated by a solid triangle is the center of a 3m-gonal
tile of  T  (where  m≥1).

For case  (i)  we proceed as described above for case  (i)  of the group  p6.  Let

V  be a vertex as described, with  δ(V) = Q, and consider possible positions of  Q  relative
to a tile  H  of  H.  If  Q  is interior to  H  (at  Q1, say) then the operations of the group

lead to three copies of  Q  in  H.  If  Q  straddles an edge of  H  (at  Q2, say), the the op-

erations of the group lead to three half-copies of  Q  in  H.  Both cases lead to a contra-
diction as before. The only remaining possibility is that  Q  is at a vertex of  H  (at  Q3,

say) represented by the open (hollow) triangles.  In this case one copy (actually, three

one-third copies) of  Q  lies in  H, and there is no immediate contradiction. However, we

now proceed with an exactly similar argument for the remaining 3-centers. Let us de-



Page 11

note such a 3-center by  V'. If  V'  is a  3p-valent vertex, then we count the number of

3p-gonal tiles  Q'  in a hexagon  H'.  Again there are three copies (if  Q'  lies interior to

H') or three half-copies (if  Q'  straddles an edge of  H'); however, the exceptional case

of three one-third copies cannot arise now, since the vertices of  H' are already allocated

to vertices or tiles. Hence a contradiction is reached. An exactly similar argument can be

used in case  (ii), and so group  p3  cannot occur.

Classes  p31m  and  p3m1. The argument for  p3m1  is identical to

that for  p3.  For  p31m  we employ an argument similar to that for  p6.  There are two

sorts of  3-centers: each center of the first sort has three lines of reflection passing

through it, and all such centers belong to one transitivity class under the group. Take the

corresponding Dirichlet tiling and consider how many 3-centers of the second sort

(which do not lie on any lines of reflection) are contained in each tile. A contradiction i s

reached as before, showing that a group of this class can not arise as a symmetry group

of a selfdual tiling.

This completes the proof of the theorem.    ·

We conclude this section with some remarks about Theorem 2.  Let us say that a
tiling  T   is harmonious  if every automorphism of  T   is induced by an (isometric)

symmetry of the tiling. In a similar way, we may say that  T    is ha rmon ious ly

selfdual  if  T   is harmonious and there exists an isometric copy  T *  of  T   which

establishes that  T   is metrically selfdual, and, moreover, every symmetry of  T   i s

also a symmetry of  T *. If  T   is harmoniously selfdual, then we refer to this special

superposition of  T   and  T *  as a harmoniously dual superposit ion, and denote i t

by  T H.  Clearly, for harmoniously selfdual tilings  T   the selfduality group  D(T )  i s

isomorphic to the symmetry group  S(T H), and the latter, as we have remarked, may be

regarded as a 2-color group.

These concepts may appear very special. However, no periodic tiling is known

which is not homeomorphic to a harmonious tiling, and no selfdual tiling is known which

is not homeomorphic to a harmoniously selfdual tiling. We conjecture that, in fact, no

exceptions exist, and all periodic tilings are homeomorphic to harmonious ones, and the

same is true for selfdual tilings.

The theorem shows that a group of the class  p4g  can occur as the symmetry

group of a selfdual tiling. However, it is of interest to note that this is not so if we r e -

strict attention to harmoniously selfdual tilings. (It will be observed that the tiling i n
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Figure 7(l) with this group is not harmoniously selfdual.) To see this, suppose   T  i s

harmonious selfdual, with symmetry group of class  p4g.  As in the proof of the second

part of Theorem 2, each  4-center must be either a vertex (of valence  4n,  n ≥ 1)  or
the center of a tile  (with  4m  edges,  m ≥ 1). Since  T   is harmoniously selfdual, cen-

ters of both kinds  (with  n = m)  must exist, and so the set of 4-centers of the first kind

must be congruent to the set of 4-centers of the second kind. But this is impossible

since, in group  p4g,  all  4-centers are of the same kind, that is, belong to the same

transitivity class (see, for example, Figure 1.4.2 of Grünbaum & Shephard [1987]).

This is a contradiction showing that such a tiling cannot exist.

Another remark concerns the relationship between the symmetry group of a

selfdual tiling, and its rank. This has not been fully investigated, and in Table 1 we show

the information available to us. A plus sign (+) indicates that there exists a tiling of the

rank in question (2,  4  or  ∞ ); a cross (x) indicates that no such tiling exists; and a
minus sign (-) indicates that no tiling is known, although we are not sure that such a

tiling cannot exist.

Table 1.

        Group p 1 pg p m cm p 2 pgg pmg pmmcmm p 4 p4g p 4 m
Rank

   2 + + + + + + + + + + + +

  4 x x x x + - - - + - - -

  ∞ + + + - + - - - - - - -

In Figures 7, 9 and 10 we show examples of selfdual tilings with all combina-

tions of symmetry group and rank for which we assert existence in Table 1.

We remarked in Section 2 that selfduality groups are best described in terms of

2-color groups.  A 2-color group is the group of automorphisms of a 2-colored tiling

(that is, a tiling in which each tile has one of two given colors), where the allowable

transformations are those that map the tiling isometrically onto itself and either p re -

serve the colors of all tiles, or else reverse them all. It is well known that there are  46

classes of such groups of periodic tilings of the plane, and they are particularly suitable

for specifying the selfduality groups of harmonious tilings. (For details of the theory of
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color groups see Grünbaum & Shephard [1987], Chapter 8, or Schwarzenberger

[1984], where references to the ample literature can be found as well.) There exist no

generally accepted symbols for these groups, but the symbols recently proposed by

Coxeter [1986] are very convenient and may well become standard. (For a comparison

of the different systems of notation for 2-color groups see Washburn & Crowe [1988].)

The Coxeter notation for the 2-color symmetry group of a  2-colored periodic figure  F

(or, more generally, for any figure with a binary property) is a symbol of the type
G1/ G2 , in which  G1  is the symmetry group of  F  without regard to the color, and  G2

is the subgroup (of index 2) consisting of those isometries that map  F  onto itself while
conserving the colors. (It should be stressed that the symbol  G1/ G2  is meant to i nd i -

cate that the 2-color group is related to two other groups which express symmetry

properties of a 2-colored figure; it is not intended as an identification of the 2-color

group with a quotient group.) In the case of 2-color symmetry groups of tilings, one
symbol  G1/ G2  fails to determine the class of the 2-color group uniquely, and an addi-

tion to the notation is necessary to distinguish between the two possibilities. Using the

notation of 2-color groups, in Table 2 we list the selfduality groups of the harmonious

tilings shown in the diagrams of this paper; for convenience of reference, we give also

the symbols for 2-color groups used in Grünbaum & Shephard [1987]. It is clear that

these examples do not exhaust the possibilities; in fact, we know of several other self-

duality groups, which are listed below. It would be desirable for a complete list of self-

duality groups of harmonious tilings to be worked out. Since the rank of a harmonious
selfdual tiling  T   equals the minimum of the orders of the "color-reversing" symme-

tries of  T H, this would lead to an independent proof of Theorem 1 in the harmonious

case. We must stress that for nonharmonious tilings there is no such connection between
the color symmetries of  T H  and the selfduality group of  T  . This can be easily seen

from the example of the tiling in Figure 7(l), which has symmetry group p4g, auto-
morphisms group  p4m,  selfduality group  p4m[2]5  =  p4m/p4m,  and for which
T H  has color symmetry group  pmg[2]5 = pmg/p2.

In addition to the listings in Table 2, we have examples of harmonious tilings of
rank 2 with selfduality groups  cm[2]1 = cm/p1,  pm[2]2 = pm/cm,   pm[2 ]5 =

pm/pm(m ' ) ,   pmg[2]3 = pmg/pgg,  pmg[2]1 = pmg/pmg,   pmm[2]4 =

p m m / p m g ,  pmm[2]1 = p m m / p m m ,  pgg[2]1 = pgg/pg,  cmm[2]4 =

cmm/p2,  p4[2]1 = p4/p4,  p4g[2]3 = p4g/pgg,  and a harmonious tiling of i n -

finite rank with selfduality group  pg[2]1 = pg/p1.
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Table 2.

Tiling Selfduality group Tiling Selfduality group

Fig. 3 pgg[2]2 = pgg/p2 Fig. 4 p 4 [ 2 ]2 = p4/p2

Fig. 7 (a)p 2 [ 2 ]1 = p2/p1 Fig. 7 (b) p 2 [ 2 ]2 = p2/p2

(c) p4g[2]1 = p4g/p4 (d) pmg[2]4 = pmg/pm

(e) pm[2]1 = pm/pg ( f ) cmm[2]2 = cmm/cm

(g) cmm[2]5 = cmm/pmm (h ) pmg[2]1  = pmg/pmg

( i ) cmm[2]1 = cmm/pgg ( j ) pmm[2]3 = pmm/cmm 

( k ) p4m[2]5 = p4m/p4m

Fig. 8 (a) p 4 [ 2 ]2 = p4/p2 Fig. 8 (b) p4g[2]2 = p4g/cmm

Fig. 9 (a) p 1 [ 2 ] = p1/p1 Fig. 9 (b) cm[2]3 = cm/pm

(c) cm[2]2 = cm/pg (d) pgg[2]2 = pgg/p2

Fig. 11 pg[2]1 = pg/p1.

4. Selfdual polyhedra.  Although the theory of selfduality for polyhedra d i f -

fers in many respects from that of tilings, the latter provide a very convenient approach

to the construction of selfdual polyhedra. (For other constructions see Archdeacon &

Richter [1989]. The related topic of selfdual graphs is discussed by Servatius et al.
[1989] and McKee [1989].) In particular, we shall show how to construct polyhedra

with rank  2k  for any  k ≥ 1 (Corollary to Theorem 3). If, however, we also impose the

condition of central symmetry, the situation changes drastically and only  k = 1  and  k =

2  are possible (Theorem 5). As for tilings so for polyhedra, the automorphism group

A(P)  limits the possibilities, but does not in any sense determine, the selfduality group

D(P); the possible pairs of groups  {A(P), D(P)}  have yet to be determined. We ex -

plained in the previous section that  D(P)  is best regarded as a  2-color group; in an

obvious modification of the Coxeter notation, we use for 2-color groups on the sphere
symbols of the type  G1/ G2, where  G1  is a group and  G2  is a suitable subgroup of

index 2. We use  v(P)  to denote the number of vertices of the polyhedron  P, and  Ck  for

the cyclic group of order  k.
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Theorem 3. For every positive integer  n, there exists a convex polyhedron  Pn
such that  A(Pn) = Cn  and  D(Pn) = C2 n/ Cn . Moreover, these polyhedra can be chosen

so that  v(P1) = 7,  v(P2) = 13, and  v(Pn) = 5n +1  for  n ≥ 3.

Proof of Theorem 3. The polyhedra  P1  and  P2  in  Figures 11 and 12  es-

tablish the theorem for  n = 1  and  n = 2.

For  n ≥ 3, we consider the periodic tiling in Figure 13(a), which is harmoni-

ously selfdual and of infinite rank, as illustrated in Figure 13(b).  We take a "strip"

consisting of  n ≥ 3  rows (in Figure 13(a)  such a strip with  n = 8  is shaded),  iden-

tify the top and bottom ends of the strip, and identify as one vertex  V  all the vertices
along the right edge (see Figure 13(c)). This leads to a 3-connected planar graph  Gn

with  5n+1  vertices, whose unbounded region we denote by  W  (see also Figure 13(d)).

By Steinitz's Theorem (see Grünbaum [1967], Chapter 13) this implies that there e x -
ists a convex polyhedron  Pn, of a unique combinatorial equivalence class, such that the

graph of vertices and edges of  Pn  is isomorphic with  Gn; in fact, Figure 13(d) can

serve as a Schlegel diagram of  Pn. The selfduality group of  Pn  is generated by the self-

duality  δ  of rank  r(δ) = 2n  which is defined by  δ(V) = W,  δ(W) = V, and
δ(Xj ) = Xj+1  (subscripts  mod 2n ) where   X  represents any of the letters  A, B, C,

D, E  used for faces and vertices in the figure. The odd powers of  δ  are the only selfdu-
alities of  Pn , and the even powers are the only automorphisms. It follows that  Pn  sat-

isfies the requirements of Theorem 3.  In particular, Figure 13(d) illustrates  P8,

which is of rank  16. „

Corollary. For every positive integer  k, there exists a convex polyhedron  Qk
such that  r(Qk) = 2k. Moreover,  Qk  can be chosen so that  v(Q1) = 4,  v(Q2) = 13,

and  v(Qk) = 5⋅2k-1+1  for  k ≥ 3.

For  k ≥ 2, the corollary follows from the theorem by taking  Qk = Pn  for

n = 2k-1. In general, the rank of  Pn  is the highest power of  2  that divides  2n.  For

k = 1  the situation is special, since the regular tetrahedron satisfies the requirements

of the corollary for  k = 1, although it has too many automorphisms to play the role of  
P1  in Theorem 3.

To formulate our next result, we need the concept of polarity for convex polyhe-

dra in  ƒ3 . If  P  is a convex polyhedron  P  then its polar polyhedron  P*  is defined by

P*  =  { Y ∈ ƒ3 :  <X,Y> ≤ 1 for all  X ∈ P }.
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This relationship is reciprocal; that is, P**  and  P  are the same subset of  ƒ3 (see, for

example, Grünbaum [1967], Section 3.4). There is a natural duality (in the sense de-

fined in Section 1)  δ   from  P  to  P* , which maps each face  F  of  P  to the face  F*  of

P*  defined by

δ(F)  =  F*  =  { Y ∈ P* :  <X,Y> ≤ 1 for all  X ∈ F }.

(Another way of describing the polarity between convex polyhedra is to say that  P*  i s

obtained from  P  by reciprocation in a unit sphere  U.)  For convex polyhedra  P  and

Q , we define a metric isomorphism from  P  to  Q  as an isometry of  ƒ3  which maps

P  onto  Q, and a metric duality from  P  to  Q  as an isometry of  ƒ3  which maps  P

onto its polar  Q*. Similarly, we can define the metric automorphism group   S(P)

and the metric selfduality group  of  P. It is clear that every metric automorphism

or selfduality of  P  induces a combinatorial automorphism or selfduality (so that the

groups just defined can be considered as subgroups of   A(P)  and  D(P), respectively),

but the reverse is generally not the case. A polyhedron  P  is harmonious if  S(P)  i s

isomorphic with  A(P).  A polyhedron  P  is harmoniously selfdual if it is harmoni-

ous and there is a unit sphere  U  such that the polyhedron  P*  obtained from  P  by r e -

ciprocation in  U  is congruent with  P  and so situated that every symmetry of  P  is also
a symmetry  of  PH = P ( P*. Then the selfdualities of  P  can be realized by isometries

of  ƒ3  which map  P  onto  P*  and vice versa.

It is well known (Mani [1971]) that each convex polyhedron  P  in  ƒ3  there

exists an isomorphic polyhedron  Q  for which each automorphism is induced by a sym-

metry. However, it is an open question whether each selfdual convex polyhedron in  ƒ3

is isomorphic to a harmoniously selfdual polyhedron. The next theorem shows that the

polyhedra in Theorem 3 are isomorphic to such polyhedra, with the consequence that

Theorem 3 is true in a metric as well as in a combinatorial sense. In Theorem 4 we use

the usual notation for symmetry groups of a 2-sphere; see, for example, Coxeter &

Moser [1980] or Grünbaum & Shephard [1981]. We note that the selfduality group of a

harmoniously selfdual polyhedron  P, that is, the symmetry group of  PH, can be de-

scribed by a 2-color group.

Theorem 4.  For all positive integers  n  and  k, the polyhedra  Pn  and  Qk  de-

scribed in the proofs of Theorem 3 and the Corollary can be chosen to be harmoniously

selfdual; that is, their automorphisms and selfdualities are all induced by isometries of



Page 17

ƒ3  and reciprocations. In particular, the choice can be made so that  A(Pn) = S(Pn) =

[ n ]+  and  D(Pn) = S(PnH) = [2+, 2 n+] / [ n ]+  for all n ≥ 1.

Proof of Theorem 4.  In the proofs of Theorem 3 and its corollary, the poly-
hedra  Pn  and  Qk  were defined only up to isomorphism. To complete the proof of Theo-

rem 4, we need to specify points in  ƒ3  for the vertices of each  Pn   and  Qk .

In the case of  P1 = Q2   we locate the vertices as follows (see Figure 11(b)):

V1 = ( 2 , 1, 0) V2 = (0, -1, 0)

V3 = ( w
2

 , w - 1, 2w) V4 = ( 2 , 1, 1)

V5 = (- 2 , 1, 0) V6 = (- 2 , 1,- 2 )

V7 = (0, 1, - 2 )

where  w = 25( 6 - 1) .  Now the linear transformation (x, y, z) Ø (-x, -y, z) maps

P1  onto its dual, and so induces the unique selfduality of  P1.

For  P2 = Q2  we choose the vertices as follows (see Figure 12(b)):

V = (0, 0, +1)
A1 = (+1, 0, -1) A3 = (-1, 0 -1)

B1 = (0, +1, -1) B3 = (0, -1, -1)

C1 = (+1
2 , +3

2 , -12 ) C3 = (-12 , -32 , -12 )

E1 = (+1
3 , -23 , +1

3 ) E3 = (-13 , +2
3 , +1

3 )

F1 = (+1
3 , -13 , +2

3 ) F3 = (-13  +1
3 , +2

3 )

G1 = (+1, +1, 0) G3 = (-1, -1, 0).

Regarding the points of  ƒ3  as column vectors, let  δ  be the isometry of  ƒ3  defined by

left multiplication by the matrix

0 –1 0

1 0 0 .

0 0 –1
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Then  δ  maps  Q2  onto  Q2* , and thus induces a selfduality of  Q2.  The isometry, and

hence the selfduality, has rank 4, and it is easy to see on combinatorial grounds that no
selfduality of  Q2  has smaller rank. It is also easy to check that  Q2  is harmoniously

selfdual and has the stated groups of automorphisms and selfdualities. (To verify that  δ
maps  Q2  onto  Q2* it is only necessary to show that  <δ(X), Y> ≤ 1  for any pair  X, Y  of

vertices of  Q2, with equality in the appropriate cases. We omit the details.)

There remains the case of  Pn  with  n ≥ 3, which is somewhat more difficult to

calculate. We begin by constructing a simpler polyhedron  Tn , whose underlying graph

is illustrated in Figure 14(a) (for the case  n = 8). Then  Tn  satisfies  A(Tn) = Dn  and

D(Tn) = D2 n .  To realize  Tn  as a polyhedron in  ƒ3  we locate the vertices as follows:

V = ( 0, 0, 1 )

Cj  = ( 1b  ⋅cosπ(j+1)
n  ,  1b  ⋅sinπ(j+1)

n  , 0 )

Aj  = ( b⋅cosπ j
n  , b⋅sinπ j

n  , -1 )

Fj  = ( b⋅cosπ j
n   b⋅sinπ j

n  , 1-b4 )

for  j = 1, 3, ... , 2n-1, where  b = cosπn  .  It can be verified that  S(Tn) = [n]  and

S(TnH) = [2+,2n]/[n]. (We note that a right n-sided pyramid with a regular basis

has the same groups as  Tn; this is the description of the selfduality group of pyramids

alluded to in Section 2.)

Now, again understanding the vertices as column vectors, let the isometry  δ  be

defined by left multiplication by the matrix

+cosπn  - s i nπn  0

+sinπn  cosπn  0

0      0 - 1

which represents a rotary reflection about the  Z-axis through  1
2n   of the full turn.

Then it can be verified (we omit the calculations) that  δ  maps  Tn  onto  Tn*  and that  δ

has order  2n. To construct  Pn ,  we must modify  Tn  in such a way as to destroy the

symmetries which are not induced by powers of  δ . We do this by cutting off each of the
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vertices  Fj  (j = 1, 3, ... ), adding in its place a new face  Bi -1  which passes through the

vertex  Cj   and which intersects the edges through  Fj   at points we call  Dj   and  Ej  .  To

preserve the selfduality of the polyhedron under  δ , we need also to add a vertex  Bj   (j =

1, 3, ... ) which extends the face  Cj+1  and to replace the face  Fj+1 by new faces  Dj+1
and  Ej+1, as shown in Figure 14(b); the position of  Bj   is determined by polarity from

the position of the plane through  Cj  , Dj   and  Ej  . (To avoid cluttering up the diagram,

the modifications are shown for one value of  j  only; they need to be carried out at all
vertices  Fj  .) The calculations of the coordinates of the vertices of the modified polyhe-

dron are essentially elementary, and we do not give details here. It is clear that duality
of the new polyhedron  Pn  and its image under  δ  is maintained, that the polyhedron ob-

tained is isomorphic to  Pn  in Theorem 3, and that the groups  S(Pn)  and  S(PnH)  are

as claimed.  „

We remark that a slight modification of the above construction leads to another
family of harmoniously selfdual polyhedra:  convex polyhedra  Rn  such that  A(Rn) =

S(Rn) = [n]+  and  D(Rn) = S(RnH) = [2,n]+/ [ n ]+, for all n ≥ 2.  For  R2  the poly-

hedron of Figure 15 can be chosen, and for  n ≥ 3  a typical polyhedron is shown in F ig -

ure 16  (where we have taken  n = 8). We note that these polyhedra have rank 2; in fact,

all their selfdualities have rank 2.

Concerning the possibilities present for centrally symmetric polyhedra we have:

Theorem 5.  If  P  is a combinatorially selfdual polyhedron with a center of

symmetry then its rank  r(P)  is either  2  or  4.  Moreover, there exist centrally
symmetric convex polyhedra  C2  and  C4, with center at the origin, which are harmo-

niously selfdual and such that  r (C2) = 2,  S(C2) = [2 ,2] ,  S(C2H) = [2 ,4 ]/ [2 ,2 ] ,

and  r(C4) = 4,  S(C4) = [2 ,2+],  S(C4H) = [2 ,4+] / [ 2 , 2+].

Proof. The fact that  2  and  4  are the only possible values for the rank of a

combinatorially selfdual, centrally symmetric polyhedron follows almost word by word

as in the analogous part of the proof of Theorem 1, with three points of difference:  ( i )

Instead of working with the polyhedra themselves, we consider their projections onto a

fixed sphere on which they induce tilings; thus we discuss tilings of the sphere instead of

the plane.  (ii)  Since the mapping  φ   may be assumed to commute with the antipodal

map of the sphere, it has a fixed point (see, for example, Alexandroff-Hopf [1935],

Theorem IV on page 481).  (iii)  Since the number of faces of a polyhedron is finite, the
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rank of a polyhedron cannot be infinite. Thus we only need to prove the existential part

of the theorem.

The smallest centrally symmetric selfdual convex polyhedron that can be taken as
C2  has 8 vertices;  a Schlegel diagram of  C2  is shown in Figure 17(a). This polyhedron

was first mentioned as being (combinatorially) selfdual by Kirkman [1857], and later

also by Hermes [1900] and Brückner [1900]; however, none of these authors noticed
that  C2  could be realized as a centrally symmetric polyhedron.  This fact was first

stated by Jucovic [1970], while the realization of  C2  as a harmoniously selfpolar

polyhedron (as shown in Figure 17b) is due to Leichtweiss [1978]. The construction of
C4, which appears to be new, is indicated in Figure 18. In Figure 18(a) a Schlegel d ia-

gram of  C4  is given, while a harmoniously selfdual realization is shown in Figure

18(b); the coordinates of the vertices of the polyhedra in Figures 17(b) and 18(b) are

listed in the captions. The verification of the claims concerning groups of symmetries
and the harmonious selfduality of these polyhedra is routine, and is omitted. „

We conjecture that each of the polyhedra described in this section has the smal l -

est possible numbers of vertices among all selfdual polyhedra with the properties stated

in each case.

5.  Selfdual configurations in the projective plane.  For our third, and

final, example of selfdual objects whose rank exceeds  2  we turn to configurations of

points and lines in the real projective plane. We shall be exclusively concerned with
( nm)-configurations, that is, sets of  n  points  Pi  and  n  lines  Li ,  i = 1,2,...,n,

such that every  Pi  lies on exactly  m  of the  lines  Lj , and conversely. Duality is defined

as in Section 1, and it is worth remarking that many of the configurations that occur i n

elementary projective geometry are selfdual -- for example, the configurations of
Pappus and Desargues are selfdual  (93)- and (103)-configurations.

As with tilings, several distinct meanings can be attached to selfduality of con-

figurations. The first, alluded to in the preceding paragraph, is the combinator ia l

sense, with isomorphisms and dualities being understood in the sense of the incidence

lattice. Of independent interest are pro ject ive  selfdualities, in which isomorphisms

are induced by collineations, and dualities by correlations, of the projective plane i n

which the configuration has been embedded. (In fact, an even more detailed classification

arises from the possibility of using projective planes over various fields; here, how-
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ever, we shall restrict attention to the real projective plane.) For a selfdual configura-

tion  C  embedded in the projective plane we shall use  A(C)  and  D(C)  to denote the
automorphism and selfduality groups, while  AL(C)  and  DL(C)  will indicate the groups

of collineations, or of collineations and correlations, of  C, respectively.

As an illustration we consider the (214)-configuration  C  shown in Figure 19.

This selfdual configuration has been extensively studied by many authors, but only r e -

cently has it been observed that it admits an embedding in the real Euclidean plane  ƒ2

(embeddings in the complex plane and in finite planes were found long ago); see Grün-

baum & Rigby [1990] for the properties of this configuration, and for references to

earlier works. It can be shown that  A(C) = PGL(2,7)  of order 336, and that  D(C)  has
order 672; in contrast,  AL(C) = D7 ,  DL(C) = D7 x C2, and no embedding of  C  i n

ƒ2  has a larger group of collineations and correlations.

From now on we shall consider only (n3)-configurations. For some special cases,

including the configurations of Pappus and Desargues, the various groups have been

studied; see, for example, Kagno [1947], Coxeter [1975], [1977]. However, the ques-

tion of rank of the configurations has not been considered before. (We may note that

Coxeter [1955, p. 67] mentions that  a "polarity" is an involutory correlation; he thus

comes close to the question of rank of a selfduality -- but he does not pursue the topic.)

The following is analogous to the result on polyhedra:

Theorem 6.  There exist selfdual  (n3)-configurations  Ck  in the projective
plane  (k ≥ 1)  with  r(Ck) = 2k .  We may choose  C1  to be a  ( 93)-configuration, and

Ck, for  k ≥ 2,  to be a  (64q3)-configuration with  A(Ck) = AL(Ck) = Cq, and  D(Ck) =

DL(Ck) = C2q,  where  q = 2k-1.

 Proof.  For  C1  we may take the Pappus configuration. For  k ≥ 2  we con-

struct  Ck  using the fragments  F  and  G  shown in Figure 20. Fragment  F  is obtained

from a configuration usually denoted  (103)5  (see, for example, Schroeter [1889],

Dorwart [1967], Bokowski & Sturmfels [1989, p. 44]), by breaking one of its i n c i -

dences. Fragment  G  is dual to  F, and the points and lines of both fragments have been

labelled following the convention made in Section 2.  Using three copies of  F  and three

copies of  G, together with additional points and lines labelled by  W  and  X  (with ap-

propriate primes and/or subscripts), we construct a larger fragment  H , which i s

schematically indicated in Figure 21. Using  q = 2k-1  copies of  H, placed in a necklace
like circuit, yields the configuration  Ck. A selfduality  δ  of this configuration maps  A1,
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B1, C1, ...  onto  A2, B2, C2, ... ; these map onto  A3, B3, C3, ... in the next fragment, and

so on. (Subscripts are taken modulo  2q.) To see that  Ck  satisfies the requirements of

Theorem 6, it is convenient to consider its Levi-diagram (Figure 23; see Coxeter

[1950] for more detailed explanations of Levi graphs); this is a graph in which the

points of the configuration are represented by black vertices (solid dots), the lines of

the configuration by white vertices (hollow dots), and vertices corresponding to incident

points and lines determine edges of the diagram. The parts of the Levi-diagram corre-

sponding to  F  and  G  are shown in Figure 22; from these it is clear that  G  is dual to

F, and from the different roles  A  and  V  play in the diagrams it is obvious that the only
way a duality can operate in  Ck  is by mapping a copy of  F  onto a copy of  G.  The points

and lines added in the formation of  H  also map appropriately under dualities that carry

copies of  F  onto copies of  G (and vice versa), as is visible from the Levi-diagrams of

two consecutive copies of  H. It follows therefore that all possible dualities are odd pow-

ers of the duality  δ  described above. Each of these is of rank  2q = 2k, which completes

the proof of Theorem 6.

We do not assert that  Ck  is the smallest configuration of rank  2k, but we believe

that the numbers of points and lines cannot be decreased greatly unless a radically d i f -

ferent method of construction is used. Also, it would be of interest to decide whether the
configurations we described have embeddings for which  AL(Ck) = Cq, and  DL(Ck) = C2q.

It seems likely that there exist selfdual (nm)-configurations with  m > 3  and of

arbitrarily large rank; however, this has not been established so far.

6. Remarks and problems.  

( 1 ) Plane selfdual tilings of infinite rank can be used to construct selfdual

tilings of the torus of arbitrary rank  r = 2k . The method is illustrated in Figure 24 for

r = 8.  No results seem to be available concerning the possible automorphism and self-

duality groups of such tilings. Also, it appears that selfdual tilings on manifolds of

higher genus have not been investigated so far.

( 2 ) The construction of selfdual polyhedra or tilings by performing "dual

changes" on "dually corresponding" elements has been used to obtain almost all the ex-

amples in this paper, even if the presentation does not indicate this. Although this tech-

nique is as old as the investigation of selfdual polyhedra (Kirkman [1857]), it applies
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here with an essential modification: if the selfduality is of rank  r  greater than 2, then

the changes must be made at all  r  elements involved. Thus it is possible that, from a

selfdual polyhedron  P  of rank  2, the use of a selfduality of  P  with rank  r > 2  can lead

to a selfdual polyhedron of rank  r. This happens, for example, in the construction of the

Jendrol polyhedron (see Figure 25).  Similarly, the use of selfdualities of infinite rank

of the square tiling (which is of rank 2) leads to tilings with infinite rank, such as those

in Figures 3, 5, 10.

( 3 ) In the hyperbolic plane there exist infinitely many selfdual tilings with a

high degree of regularity. However, no characterization of the possible automorphism

groups or selfduality groups is known.

( 4 ) As observed by Leichtweiss [1978] and Sztencel & Zaremba [1981], the
polyhedron  C2  described in Section 4 can serve as the unit sphere of a 3-dimensional

normed space  X  with the property the dual (adjoint) space  X*  is isometric to  X  (thus

X  is selfdual) but only the second dual  X**  is canonically isometric to  X.  Analogously,
the polyhedron  C4  is the unit sphere of a 3-dimensional normed space  Y  which is i so-

metric to its dual  Y*,  but the fourth dual  Y****  is the first which is canonically i so-

metric to  Y. Moreover, Theorem 6 implies that for no 3-dimensional normed space iso-

metric to its dual does one have to go beyond the fourth dual to find a canonical isometry.

It is known there exist selfdual centrally symmetric polytopes of all dimensions and of

rank 2; these are of interest as unit balls of selfdual normed spaces without inner

product norms (see Partingon [1986]).  However, it is not known whether ranks

greater than 2 are possible for centrally symmetric convex polytopes of dimension e x -

ceeding  3. If central symmetry is not required, the polyhedra constructed in Section 4

can be used to obtain selfdual convex polytopes of dimension  4  or higher, with a r b i -

trarily high rank.

( 5 ) S. Jendrol [1990] has determined all symmetry groups that are possible

for 3-dimensional selfdual convex polyhedra.
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Figure 1.  A six-sided pyramid  P, illustrating the concept of selfduality.  (a) A

Schlegel diagram of  P, with vertices and 2-dimensional faces labelled so as to indicate

the selfduality  δ  of  P  discussed in the text.  (b) A perspective view of the same pyra-

mid  P. To simplify the diagram only the vertices are labelled.

A
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C
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D
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E
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F
F

G

G

H

H

Figure 2.  A balanced labelling of the six-sided pyramid  P, which shows a self-

duality of  P  of rank  2.
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Figure 3.  A selfdual tiling  T  of infinite rank.  The labels in  (a)  indicate one

selfduality   δ  of  T  which is of infinite rank; the application of  δ  increases the sub-

scripts by 1.  (b)  The metric selfduality of  T;   two copies of  T  (that is,  T  and its dual

T*) are shown in dual position.  Analogous illustrations will be used in several other

figures.

(b(a)
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H11K
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Figure 4.  A selfdual tiling  T  of rank 4.  The interpretation of the two parts of

this figure is as in Figure 3, except that the subscripts are to be taken  mod 4.
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A

A

B

C

B

C

D

D

E

E

Figure 5.  A selfdual tiling of rank 2. A selfduality is indicated by the balanced

labelling of a few vertices and tiles. This tiling is not metrically selfdual since the small

triangles (such as  B  and  C) are too close to each other to be able to contain an isometric

image of the two corresponding trivalent vertices.
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(a)

X
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P
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P*

S

(b)

X
S

F

P

R
P*

Q

Q*

(c)

Figure 6.  An illustration of the steps in the proof of Theorem 1; details are e x -

plained in the text.
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(f)    cm(e)    pg(d)    pm

(b)    p2 (c)    p4(a)    p1

Figure 7, first part.  Periodic metrically selfdual tilings of rank 2 with various

symmetry groups.  Except for (l), all tilings are harmonious.
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(g)    pmm (h)    pmg (i)    pgg

(j)    cmm (k)    p4m (l)    p4g

Figure 7, second  part.  

(a)

1

Q2

Q3

Q

H

H
1

Q2

Q3

Q

(b)

Figure 8.  Illustrations of the steps in the proof of Theorem 2; details are e x -

plained in the text.
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p2 cmm

Figure 9.  Periodic metrically selfdual and harmonious tilings of rank 4, with

various symmetry groups.

p1 pm

pg p2

Figure 10.  Periodic metrically selfdual and harmonious tilings of rank ∞ , with

various symmetry groups.
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Figure 11.  A Schlegel diagram (a), and a view from above (b), of a combinato-
rially selfdual polyhedron  P1  of rank  2,   with  7  vertices and such that  

A(P1) = C1  and  D(P1) = C2. In (a), a balanced labelling is indicated; the vertices

in (b) have the coordinates given in the text.

A
1

B1

C1

G1

V

F1

E1

F3

E3

A3

B3

C3

G3

B1 A1

A3 B3

V

A2

A4

C1

F2
E2

C4

G1

F1 E1

C3

G4
B2

B4
F3E3

G2

C2

G3
E4

F4

W

Figure 12.  A Schlegel diagram (a), and a projection (b),  of a combinatorially
selfdual polyhedron  P2  of rank  4, with  13  vertices and such that   A(P2) = C2  and

D(P2) = C4.
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(b)

(a)

Figure 13 (first part).   An illustration of the proof of Theorem 3.  (a) A self-

dual tiling  T  (of infinite rank), and a "strip" of  T  (indicated by shading) which is used

in part (c) to construct a selfdual polyhedron.  (b) The tiling  T  from part (a) is met-

rically selfdual.  (c) The strip from part (a), with labels to indicate the identifications

that are needed for the construction.  (d) The graph formed by the identifications i nd i -

cated in part (c); it can also serve as a Schlegel diagram of the polyhedron constructed i n

the text. The subscripts of the labels taken  mod 16  indicate a selfduality of the polyhe-
dron, which has rank 16, has automorphism group  C8  and selfduality group  C1 6.
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Figure 13 (second part).   
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Figure 14.  (a)  A Schlegel diagram of the polyhedron  Tn  used in the proof of

Theorem 4.  (b) An illustration of the process of cutting of the vertices Fj  , for the proof

of Theorem 4. For simplicity, only one vertex  Fj   has been cut off.
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Figure 15.  A Schlegel diagram of a polyhedron  R2 .
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Figure 16.  A Schlegel diagram of a polyhedron  Rn  (for n = 8) with  5n+1  v e r -

tices, such that  S(Rn) = [ n ]+  and  S(RnH) = [ 2 , n ]+/ [ n ]+. In this diagram balanced

labelling is used.
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Figure 17.  The selfdual centrally symmetric polyhedron  C2  of rank  2.  (a) A
Schlegel diagram of the polyhedron, with balanced labelling.  (b) A projection of a h a r -
moniously selfdual, centrally symmetric realization of C2, with vertices  A = (1,0,0),
B = (–1,0,0),  C = (0,1,0),  D = (0,–1,0),  E = (1,1,1),  F = (–1,–1,–1),
G = (–1,–1,1),  H = (1,1,–1).

A1

A2

A3

A4

C1

D1

B1

E1

G1

F1

B2

B3

B4

G2D3

D4

F2

C3

C4

E2

D2

C2

1a

4a

3a

d4

d3

d2

d1
b4

c3

c2

c1

b1

b3

b2

4E

4F

4G

a2

3E

3F

3G

4c

A1

E1

d1

B1

G1

D1

F1

c1

a1

C1

b1

a3

A3

G 3

D3

d3
F3

E 3

c 3

C 3
b3

B 3

(a) (b)

Figure 18.  The selfdual centrally symmetric polyhedron  C4  of rank 4.  (a) A
Schlegel diagram of the polyhedron, with labels indicating a selfduality of rank  4.  A
capital letter with a subscript is used for each vertex, and the selfduality map increases
the subscript by  1 (mod 4). (b) A projection of a centrally symmetric metrically
selfdual realization, with vertices  A1 = (60,0,60),  A3 = (60,0,–60),  B1 =
(30,30,45), B3 = (30,–30,–45), C1 = (18,42,33),  C3 = (18,–42,–33),
D1 = (10,–40,50),  D3 = (10,40,–50),  E1 = (0,–60,30),  E3 = (0,60,-30),
F1 = (0,–20,70),  F3 = (0,20,–70),  G1 = (0,40,40),  G3 = (0,–40,–40).  The v e r -
tices labelled by lower case letters differ from the the ones marked with the same upper
case letter by the sign of the x-coordinate, and all coordinates should be divided by  60.
The isometry mapping of  C4  onto its polar  C4*,  which is needed for the selfduality of
rank  4,  is a rotation about the x-axis that carries the z-axis to the y-axis.
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Figure 19.  A selfdual configuration (214); a balanced labelling is shown.
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         Figure 20.  Fragments  F  and  G  of configurations used in the construction of the
selfdual configuration described in the text.

Figure 20.  Fragments  F  and  G  of configurations used in the construction of the

selfdual configuration described in the text.
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Figure 21.  A larger fragment,  H,  of a configuration, used in the proof of Theo-

rem 6.
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L1 M1

B0 N1 C0
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P1 Q1

G0 H0

R1 S1 T1 U1

J0 K0
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B1 N2 C1
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P2 Q

G1 H1

R2 S2 T2 U2

J1 K1

V2

(a)  Levi-diagram of F. (b)  Levi-diagram of G.

Figure 22.  Levi diagrams of the fragments  F  and  G . The solid dots represent

points, the hollow ones represent lines.
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Figure 23.  Levi diagram of the fragment  H.
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Figure 24.  Suitable period parallelograms of a selfdual tiling of the plane can be

used to construct selfdual tilings of the torus. Here a tiling with symmetry group  p1

and infinite rank is used to define a selfdual tiling of the torus of rank 8.
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Figure 25.  (a) Another Schlegel diagram of the selfdual polyhedron  C2  of

Theorem 4, and a selfduality of  C2  rank 4, which increases all subscripts by 1 (mod

4).  (b) The selfdual polyhedron of rank  4  described by Jendrol [1989] can be ob-
tained from the selfdual polyhedron  in part (a) by subdividing the faces  a1  and  a3 ,

and simultaneously truncating the vertices  A2  and  A4 .


