
ON SOME COVERING AND INTERSECTION

PROPERTIES IN MINKOWSKI SPACES

B. GRUNBAUM

1. Introduction Let X denote a Minkowski space (i.e. a finite di-
mensional normed linear space over the reals) and let S = {x e X; \\x \\ < 1}
denote the unit cell of X. In this note we shall be concerned with two
numbers, Ex and JXί determined by the geometric properties of X.

DEFINITION 1. The expansion constant Ex of X i s the greatest lower
bound of real numbers μ > 0 which possess the following property:

Given any family {xi + atS; i e 1} of mutually intersecting cells (in
other words, given any family {xj of points and any family {αj of
non-negative numbers such that \\xt — Xj\\ < at — aό for all i, j e I); then

n (Xi + μuiS) Φ Φ .
lei

DEFINITION 2. Jung's constant Jx of X i s the greatest lower bound
of real numbers μ which possess the following property:

Given any family {xi + S; i e 1} of mutually intersecting cells (i.e.
given any family {#J such that H^ — Xj\\ < 2 for all i, j e I] then

Qfa + μS) Φ φ .

We note the following immediate consequences of the above defini-
tions :

(i) By Helly's theorem on intersections of convex sets, the index
set I may be assumed to consist of not more than n + 1 elements, where
n is the dimension of X.

(ii) Standard compactness arguments show that Ex and Jx are not
only the greatest lower bounds, but even the minima of the numbers μ
defining them.

(iii) 1 < Jx < Ex < 2.

(iv) Jx may equivalently be defined as the smallest number such
that a cell of that diameter may cover, after a suitable translation, any
set of diameter < I .
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The definitions of Ex and Jx apply obviously to more general spaces.
We will show elsewhere [4] that Ex plays an important role in the prob-
lem of extensions of transformations. In this context Nachbin [9] and
Aronszajn-Panitchpakdi [1] have studied concepts closely related to the
property Ex = 1.

Szokefalvi-Nagy [12] and Hanner [6] proved that Minkowski spaces
whose Jung constant equals unity are precisely those having a parallelo-
hedron as unit cell the corresponding result for the expansion constant
had been established by Nachbin [9].

For the Euclidean space En the value JEn = [2nl(n + l)]i was deter-
mined by Jung [7]. Bohnenblust [2] proved that Jx < 2n\(n + 1) if X
is an ^-dimensional Minkowski space. Leichtweiss [8] gave a simpler
proof of Bohnenblust's result and characterized those ^-dimensional
Minkowski spaces X for which Jx = 2nj(n + 1).

The main object of the present note is the determination of the exact
upper bound of Ex for π-dimensional spaces X and the characterization
of those spaces for which the bound is attained.

2 Bound for the expansion constants. We show first of all that
Bohnenblust's bounds for Jung's constants apply also to expansion
constants.

THEOREM 1. If X is an n-dimensional Minkowski space then
Ex < 2n\{n + 1).

Proof. Let ^ = {xi + aβ; i e 1} be any family of mutually in-
tersecting cells in X. We shall show that

n U + - ^ <*ts)
ieΛ n + 1 /

n +

As remarked above in (i), it is sufficient to prove (1) in case I has
n + 1 elements we shall assume 7 = {0,1, •••,%}. We shall also assume
that at > 0 for each i e I; indeed if ai = 0 then x% belongs to all mem-
bers of £/* and (1) obviously holds.

Let us denote

( 2 ) α = Σ « i
i = 0

It is convenient to deal separately with two possible cases:

( 3 ) (ϊ)a>(n- l)ak for all k e I

(ii) there exists a k e I such that a < (n — 1)^ .

In both cases we shall establish (1) by exhibiting a point belonging to
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( 4 ) Π (Xi + μoctS)
2 = 0

for a suitable μ < 2n/(n + 1).
We consider first the case (i) and we introduce the following notations:

a\ — \\a% for i e I

( 6 ) σ = Σ (α4α'j + a[a}) = αα' - (n + 1) .
0<2<j<w

Since afic'j + a\a5 > 2, and α / ^ + α α^ = 2 if and only if α4 = ajf we
have

( 7) σ = n(n + 1) + δ with δ > 0

and

( 8 ) δ = 0 if and only if a0 = α2 = an .

We also put

( 9 ) ft = a l a ~ n + X = βfo - " + 1 for 0 < i < n
σ - (n + l)(n - 2) 2(n + 1) + δ

and we note that (3) and (7) imply βt > 0 for 0 < i < n and Σ?-o/34 = 1.
We shall show that the point

n

belongs to (4), with

n M(M 9^ A.Ύ) 4 - £ ^ ^

σ- - (n + l)(w - 2) 2^ + 2 + δ ~ n + 1 '

and thus prove the theorem in case (i).
Since all the points xt enter symmetrically in our reasoning, it is

sufficient to show that

(12) z e x0 + μa0S

the relation (12) will be established by exhibiting a point y e xQ + a0S

such that

(13) z - χo = μ{y - χo).

Let y% = (atx0 + aoxt)l(aQ + at) for 1 < i < n and

Ύ. = (1 + a^jaίa - n + 1) = (1 + α^Xof α - n + 1)
σ — w(w — 3) 4w + δ
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for 1 < ί < n. Then ytex0 + a0S since (x0 + a0S) Π (xt + aβ) Φ φ; on
the other hand, γ4 > 0 because of (3) and (7), and an elementary com-
putation shows that Σ?=i7i = 1.

These relations imply that the point y — Σ?=i ΎtVi satisfies y e xo+ a0S,
and equation (13) can be established by a straight-forward computation:

[σ - n(n - 3)](y - x0)

= - [σ - n(n - 3)]α0 + Σ (1 + a%a'Q){a[a - n + 1) α^° + a°Xi

ii a%

•=. —\σ — n(n — 3)]^0 + 2(n — l)α?0 + Σ (aa'ΐ ~ n

ί-0

= [σ-(n + l)(n - 2)](z - x0) .

We turn now to the remaining case (ii). We change, if necessary,
the notation in such a way that 0 < a0 < aλ < < an. Then there
exists one and only one k, with 2 < k < n, such that

(k - 1)«* <
k

Denoting by α*, α'*, σ*, δ*, /3*, s*, //* quantities analogous to those
designated by the same letter without asterisk and defined by substitut-
ing in (2), (5), (6), (7), (9), (10), and (11) the letter k instead of n and
adding asterisks, we may prove as above that

z* = Π (x, + μ*atS)
k

Γ
ί-o

2n
k + 1 ~~ n + 1

We shall show that for any m satisfying k + 1 < m < nwe have

(14) z*exm + μmamS ,

where

2k - 2 ^ 2& ^ 2^
-,

^ m σ* - (jfc + l)(k - 2 )

Indeed, with the notation

ί/ίm) = ( V i + «iXm)/(αm + «i) for 0 < ί < k

t)(tt!α* - fe
2α* + am[σ* - (k + l)(fc - 2)]

it follows as above that

f o r 0 < i <
] ~ ~
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Vim) exm + amS, 7^m) > 0, and Σ f = o γ^ = 1.
Then, defining τ/(w) == Σ*^ofy?nVi

TO) we have y^ e xm + amS and

which establishes (14) and thus ends the proof of Theorem 1.

REMARKS. 1. From the relation Jx < Ex it follows that Theorem 1

implies Bohnenblust's result Jx < —— for ^-dimensional X. Using
n + 1

appropriate definitions, Leichtweiss [8] showed that the same inequality
holds also for n-dimensional spaces whose unit cell is not assumed to be
symmetric. But it follows easily from these definitions that the un-
symmetric case is implied by the symmetric one.

2. Another way to generalize Bohnenblust's result on Jung's con-
stant to spaces with unsymmetric i * unit cell " is as follows:

Let K be any convex body in the ^-dimensional Euclidean space En.
A set M c En has Z-diameter < 1 if any segment with end-points in M
may be covered by a suitable translate of K. Any such M may be
covered by a translate of nK, and the constant n is the best possible.

Indeed, the example of an ^-dimensional simplex as K, and the
centrally symmetric simplex as M shows that no number smaller than
n is sufficient. (A closer analysis of the following reasoning shows that
this is the only case in which aK, for a suitable a < n, is not sufficient.)
In order to prove that any set M of iί-diameter < 1 may be covered by
a suitable translate of nK we remark that K is contained in a centrally
symmetric convex body K* which is contained in a translate of — (n + 1)K.

Li

(This result or statements equivalent to it have been proved by many
authors; see, e.g., Leichtweiss [8, Lemma 2], Hammer [5], Suss [11],
and the references given in these papers.) Then, denoting by x and y

2nsuitable points (translations) and using the inequality Jκ* < we
n + 1

have

M c x + _??L- K* c y + 2n — (n + 1)K = y + nK ,
n + 1 n + 1 2

which proves our assertion.

3«. Characterization, of the extremal cases• Let P be an ^-dimen-
sional simplex, and let Sf — P — P — {x = y — z; y, z e P}. Among the
(n — l)-dimensional faces of Sf there are exactly 2(n + 1) which are
(n — l)-dimensional simplices; we denote them by ± Pt, 0 < i < n. Of
them, n + 1 are translates of the (n — l)-dimensional faces of P, the
remaining n + 1 being centrally symmetric to them. Let ± Hi denote



492 B. GRUNBAUM

the closed half-space bounding S* and containing ± Pt in its boundary.
We define Sp* as the intersection of all the half-spaces ± Hit Obviously,

sp c st*.

DEFINITION 3. A centrally symmetric convex set K c En is called
a Leichtweiss body if and only if for a suitable n-dimensional simplex
P we have

O p (_ XV C_ O p

Now we have the following.

THEOREM 2. The following statements on the n-dimensional
Minkowski space X are equivalent:

(a) Jx = 2n\(n + 1).
(b) Ex = 2n\{n + 1).
(c) The unit cell S of X is a Leichtweiss body.

Proof. By Theorem 1 and (iii) of the Introduction, (a) implies (b).
Let us now assume that (b) is satisfied. Then an inspection of the proof
of Theorem 1 shows that there exists a family of cells {xt + atS] cor-
responding to case (i) of the proof, and such that equality holds in
relations (11) and (8).

Now, since An + S/(2n + 2 + δ) < 2n\(n + 1) for δ > 0 (and n > 2)
it follows that (b) implies

(15) a, = a, = . = an

in other words, (a) holds.
On the other hand, (b) implies that y e Front (x0 + aQS) and that

the corresponding relation must hold for the points analogous to y on
the other cells. But this implies, because of (15), that S is a Leichtweiss
body with 2P equal to the convex hull of the set {x0, x19 •••,#»}, and
therefore (c) follows from (b).

We end the proof of the Theorem 2 by proving that (c) implies (a).

Let the simplex P be the convex hull of the points {xt 0 < i < n) and

let S* cz S c Si*. Then \xt + — S; 0 < i < n\ is a family of mutually

intersecting cells, since \xt + — S%; 0 < i < nl is such a family, but

+ ~ μ
2

for any positive μ < 2n\(n + 1) since
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n (χt + \ = Φ

for any such μ.
Thus all the assertions of Theorem 2 are proved.

REMARK. Theorem 2 generalizes the symmetric case of Leichtweiss
[8] Satz 2.

4\ Expansion constants of Euclidean spaces. In this section we
shall strengthen Jung's [7] result by proving the following theorem.

/ O™ \ l / 2

THEOREM 3. EEn = JEn = Δ ϊ i
En = JEn

Proof. Let {x% + aβ; 0 < i < n) be any family of mutually inter-
secting cells in En with at > 0, and let μ be the least positive number
such thatsuch that

(16) Π (χι + μ«iS) Φ Φ .
ΐ-0

We shall prove Theorem 3 by constructing a family {yt + S, 0 < i < n}
of mutually intersecting cells of equal radius, and such that μ is least
positive number for which

Without loss of generality we may assume that (16) contains only
one point z which, moreover, belongs to the boundary of each xt + μatSy

for 0 < i < n. Let Ct denote the cone with vertex z generated by
xt + atS; then Ct Π Cό contains a ray starting at z, and all the cones
C% are congruent. Now, if yt = z + (x — z)/ai9 the cell yt + S also
generates the cone C% and therefore (y + S)(yj + S) Φ φ. But obviously
ΓXϊ=o(Vι + μS) = {z}, and Theorem 3 is proved.

REMARK. It is well-known that Jung's constant of Hubert space
equals τ/~2" (see, e.g., Routledge [10]); it may be shown that its expansion
constant also equals i/ΊΓ.

5. Concluding remarks. In all the cases discussed above (spaces
X with Ex = 1 or 2n/(n + 1) and Euclidean spaces) we found that the
value of the expansion constant equals the value of Jung's constant.
Nevertheless, the two constants are different in general; the simplest
example to that effect is perhaps the following:
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Let Y denote the Minkowski plane (with points (x, y)) whose unit
cell is the hexagon with vertices (± 1, 0), (± a, 1), (± α, — 1) for some

a satisfying 0 < a < —. We recall the following result (Grΐinbaum [3]):
LA

For any Minkowski plane X, if p is the minimum of the lengths of sides
of equilateral triangles with vertices on the boundary of the unit cell
and containing the origin, then Jx — 2/p. It is easily checked that the
points (0; - 1), (α/2; (2 - α)/(2 - 2a)) and (α/2; - (2 - α)/(2 - 2a)) of
Y, whose mutual distances are 2 — α, determine such a minimal triangle
for H. Therefore Jγ = 2/(2 — a). On the other hand, considering the

mutually intersecting cells (1, 0) + if, ( - 1, 0) + H and (0,1/α + JLn^fl",
a

it is immediate that Eγ > 1/(1 — α + α2). (It is not difficult to establish
that the equality sign holds.) Our assertion then results from the obvious
inequality 1/(1 - a + a2) > 2/(2 - a).
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