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Satins and Twills:
An Introduction to the Geometry of Fabrics

A mathematical investigation into patterns of weaving
reveals subtle problems in combinatorics and geometry.

BraNKO GRUNBAUM
University of Washington
Seattle, WA 98195

GEOFFREY C. SHEPHARD
University of East Anglia
University Plain, Norwich NR4 7TJ

Weaving is one of the oldest activities of mankind and so it is hardly surprising that there
exists a vast literature on the subject. But this literature is almost entirely concerned with the
practical aspects of weaving; any treatment of the theoretical problem of designing fabrics with
prescribed mathematical properties is conspicuously absent. And this is so in spite of the fact
that many fabrics which are mathematically interesting were discovered empirically long ago by
practitioners of the weaver’s craft. One wonders how geometers can fail to be fascinated by the
diagrams of fabrics that abound in the literature. Yet, so far as we are aware, the only papers
that attempt to treat fabric design from a mathematical point of view are those of Lucas who
published about a century ago, an isolated paper of Shorter which appeared in 1920, and a series
of three papers by Woods published in 1935. All three authors were concerned principally with
satins (or sateens), a type of fabric which we shall discuss in the third section of this paper.

The “geometry of fabrics”, as we shall call it, involves ideas from elementary geometry, group
theory, number theory and combinatorics. There is a large number of open problems, to some of
which we shall draw attention in the following pages.

In order to make the subject manageable, it will be necessary to idealize the concept of a
fabric. For example, we shall always assume that our fabrics are unbounded, that is, that they
continue indefinitely in every direction. Thus edge-effects and selvedges (which are of great
concern to the practical weaver) will be entirely ignored here. A fabric will consist of “strands™
woven together and we shall only discuss those fabrics in which the strands are straight and lie
in one of two directions, usually at right-angles to each other. Without these restrictions there
are many other possibilities about which extremely little seems to be known.

As there is no accepted terminology, it will be necessary to begin by defining the words we
shall use. A strand (see FIGURE 1(a)) is a doubly infinite open strip of constant width, that is, the
set of points of the plane which lie strictly between two parallel straight lines. For purposes of
visualization it is best to think of a strand as a strip of paper, or similar material of zero (or
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(8) A strand (an open infinite
strip) shaded to show its direction.
(b) A layer of strands. Every point
of the plane belongs to a single
strand or to the boundaries of two
strands.

FIGURE 1.

negligible) thickness. In diagrams we shall sometimes use some method of shading, as in FIGURE
1(a), to indicate the direction of the strand. This will be essential for the correct interpretation of
the diagram when only small portions of a strand are visible as in FIGURE 2(b). By a layer we
mean a collection of congruent and disjoint parallel strands such that each point of the plane
either belongs to (the interior of) one of the strands or is on the boundary of two adjacent
strands (see FIGURE 1(b)).

The word fabric will be used in a mathematical sense to mean, roughly speaking, two layers
of congruent strands in the same plane E such that the strands of different layers are nonparallel
and they “weave” over and under each other in such a way that the fabric “hangs together.” To
be precise, “weaving” means that at any point P of E which does not lie on the boundary of a
strand, the two strands containing P have a stated ranking, that is to say, one strand is taken to
have precedence over the other, and this ranking is the same for each point P contained in both
strands. This concept may be conveniently expressed by saying that one strand passes over the
other, in accordance with the obvious practical interpretation. By saying that the fabric hangs
together we mean that it is impossible to partition the set of all strands into two nonempty
subsets so that each strand of the first subset passes over every strand of the second subset.

In FIGURE 2(b) we give a diagramatic representation of the commonest and most familiar of
all fabrics, known variously as the over-and-under, plain, calico or tabby weave. Here the shading
not only indicates the direction of each strand, but also shows which strand (a horizontal or a
vertical one) passes over the other at each point of the plane. In order to avoid any possible
misinterpretation we also give in FIGURE 2(a) a sketch of the same fabric. Here the strands have
been “separated” for clarity—this diagram may be regarded as representing the “real” fabric
corresponding to the “idealized” or “mathematical” fabric of FIGURE 2(b).

The most common and best-known type of fabric known as the over-and-under, plain, calico or tabby weave. (a) A
sketch of the “real fabric.” (b) The idealized fabric consisting of two superimposed layers of strands. (c) A design for
the fabric. A white square means that a weft strand passes over a warp strand, and a black square that a warp strand
passes over a weft strand.

FIGURE 2.
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Traditionally the two layers in a fabric are called the warp and the weft (or woof). In a real
fabric the warp runs lengthwise and the weft from side to side. In diagrams it is conventional to
draw the warp vertically and the weft horizontally. Here it will be convenient to use the terms
warp and weft in this sense.

A simple and convenient method of representing a fabric is by means of a design (also called
a diagram or draft by some authors). This is constructed in the following way. We begin with the
regular tiling of the plane by unit squares. Each square is the intersection of a row of squares
(corresponding to a weft strand) and a column of squares (corresponding to a warp strand);
according to the more usual convention we color the square white if the weft strand passes over
the warp strand, and we color it black if the warp strand passes over the weft strand. Thus the
design may be regarded as indicating the appearance that the fabric would have if the weft
strands were colored white and the warp strands were colored black. For example, in FIGURE
2(c) we show a design for the plain weave; the design can be easily obtained from FIGURE 2(b)
by replacing vertical shading by black and horizontal shading by white. Another example
appears in FIGURE 3. The fabric shown in this figure is called a balanced twill of period six and
is an example of a large class of fabrics of practical importance known as twills. A discussion of
twills and their properties will be given in the next section. For an application of a computer to
the drawing of fabric designs, see Huff [5].

A balanced twill of period six: (a) is a sketch of the “real fabric,” (b) is the idealized fabric, and (c) is a design for this
fabric.

FIGURE 3.

Sometimes it is convenient to use coordinates for the squares in a design. We set up a
coordinate system so that the centers of the squares lie on the standard integer lattice and then
refer to the square with center (x, y) as the (x, y)-square.

By a symmetry of a fabric ¥ in the plane E we mean any isometry that maps each strand of
9 into a strand of ¥ and either preserves all the rankings or reverses them all. Thus it consists of
an isometry o in E (a translation, rotation, reflection, or glide-reflection) possibly followed by a
reflection 7 in the plane E. The operation 7 reverses the ranking of the strands at each point,
converting one strand which passes over another into one that passes under it. All the
symmetries of a fabric ¥ form a group under composition called the symmetry group of ¥ and
denoted by S(¥). The elements of S(F) can be divided into two types: those which do not
involve 7 and so do not alter the rankings of the strands, and those which involve = and reverse
the rankings. The former type may be said to preserve the sides of the fabric and the set of all
such forms a normal subgroup So(%) of S(¥). The latter type may be said to interchange the
sides of ¥.

The design D of a fabric § also has a symmetry group S(D) and each element of S(D)
corresponds to a symmetry of %, though not necessarily of the same kind. For example, a
translation in S(D) corresponds to a translation in S(¥), but a rotation through 90° in S(D)
corresponds to a similar rotation of § combined with the reflection 7. Among others, the designs
of satins in FIGURE 12(b) each possess 4-fold rotational symmetries. Each 90° rotation corre-
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sponds to a symmetry operation on the fabric which interchanges its sides. This relates to the
fact that on one side of the fabric the warp strands are largely visible while on the other the weft
strands predominate, and so accounts for the well-known property of satins that their two sides
are often dissimilar in appearance. Other symmetries of a fabric § correspond to isometries
which map D onto itself with the colors black and white interchanged. For example, for the
design of FIGURE 3(c) there are rotations through 180° which reverse the direction of each row
and map the design onto itself if the colors are interchanged. Such operations also correspond to
symmetries of & which interchange its sides.

In almost all the fabrics & that we shall consider, Sy(%) (and therefore S(%)) will contain
translations in at least two nonparallel directions. The fabric will then be called periodic. The
design of a periodic fabric can always be obtained from a fundamental n X m block of squares,
suitably colored, by translations in horizontal and vertical directions through multiples of n» and
m units (see FIGURE 4). Although a fundamental block B determines the design of the fabric
uniquely, in our diagrams it is usually convenient to show a larger part of the design and

[T
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©

How the design of a periodic fabric is built up
from translates of a fundamental block B. In
(a) the block is 8 X4, in (b) it is 8 X8 and in
(c) it is 6X 6. When the block is square n X n,
the integer n is called the period of the fabric.
The fabric shown in (b) is a color-alternate
twill.

FIGURE 4.

indicate a fundamental block B by using gray and white squares instead of black and white (see,
for example, FIGUREs 6(a), (d), (h), (i), (), (k), (1), (m) and (n)). Occasionally, as in the case of
certain sponge weaves (see FIGURES 6(b), (c), (¢) and (f)), a fundamental block is too big to show
on the diagram, and then it will be assumed that the reader will be able to “see” how the design
can be continued from the part of it that is given.
~ The integers m and n (the sides of a fundamental block) are called the periods of the fabric.
We shall mostly deal with the case where the fundamental block is square, so m=n and the
integer n is called the period. Notice that when we say that a fabric is of period n we do not
preclude the possibility that it is also of period d where d is any. divisor of n. Thus a plain weave
is considered to be of period n where n is any even integer. Other terms in use for n are the order
of the fabric and the number of ends. However, we shall not use these terms here.

Not every black and white coloring of a rectangular block of squares is a fundamental block
in the design of a fabric, since the requirement that the fabric must “hang together” may be
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violated in ways that are not immediately apparent. For example, at first glance, the “designs”
of FIGURE 5 seem to correspond to fabrics, but this is not so, for in each case the “fabric” will
“fall apart.” Intuitively the set of strands labelled 4 can be “lifted off” those labelled B since at
each crossing the 4 strand passes over the B strand.

A T T T % T T i1

- e

11
1 ]

Colorings of the regular square tilings which appear,
at first sight, to be designs for fabrics, but they are
not. In each case the strands labelled 4 can be
“lifted off” the strands labelled B and so the
“fabric” does not “hang together.”

FIGURE 5.

An extremely important class of fabrics, both from a mathematical as well as a practical
point of view, will be called “isonemal,” a term derived from the Greek words toos (the same)
and ynpa (a thread or yarn). A fabric ¥ is isonemal if its symmetry group S(%) is transitive on
the strands of %. In other words, for any two strands s; and s, there exists a symmetry of ¥ that
maps s, onto s,. In terms of the design D of ¥ this means that any row or column of squares in
D can be mapped into any other row or column by either a symmetry of D, or by such a
symmetry combined with interchange of the colors black and white. In FIGURE 6 we show
examples of isonemal fabrics, and the profusion of possibilities will be apparent. Moreover, as
will be seen from the caption, many of these are actual fabrics used by the textile industry. The
reader to whom these ideas are unfamiliar should convince himself that the fabrics of FIGURE 6
are isonemal, while those of FIGURES 7 and 8 are not.

FIGURE 7 shows that even in fabrics which are not isonemal, it is possible for every strand to
weave under and over the other strands in the same “pattern” or “sequence.” A fabric with this
property is called mononemal. The difference between the concepts of isonemality and mono-
nemality can be explained by the observation that mononemality is local—it merely implies that
every strand “looks alike”—whereas isonemality is global—the relationship of each strand to
the totality of other strands must be the same. Again the reader is urged to verify for himself
that the fabrics of FIGURE 7 are mononemal, while those of FIGURE 8 are not. Clearly every
isonemal fabric is mononemal.

The above ideas lead to a classification of fabrics into three major types: isonemal (I),
mononemal but not isonemal (M), and not mononemal (N). For some purposes a finer
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(¢) and (f) are doubled sponge
weaves, (g) is satinette, (h) is duck
cloth or sailcloth, (j) is a doubled
@),
21,

satin, and (I) is a figured twill.
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(1) are from Nisbet [c],
232, 233, 240, 167,

(Designs (a),
respectively.)

FIGURE 6.
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Examples of fabrics which are mononemal but not isonemal. (e) is matt weave and (f) is rice weave. These

latter two designs are from Nisbet [c] FIGURES 22 and 168. The first four designs are of fabrics which are
both warp-isonemal and weft-isonemal and so are of type M1. The last two are of type M3.

FIGURE 7.

©
Examples of fabrics which are not mononemal. (a) and (g) are figured
twills, (c) is a broken twill, (d) is a combined twill and (f) is a
rearranged twill, being obtained from the twill shown in FIGURE 3 by
rearranging the warp threads. (Designs (a), (c), (d), (f) and (g) are from
Nisbet [c], FIGURES 186, 158, 133, 118 and 181 respectively,) Fabrics
(a) and (b) are of type N1, (c) of type N2, (d) of type N3, (e) of type
N4, (f) of type N5 and (g) of type N6.

FIGURE 8.

®
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classification is useful and interesting. Referring to FIGURE 9, we see that it is possible for the
symmetry group S(%) of the fabric & to be transitive on the weft strands (each is mapped onto
the next one above it by a “step” of 6 squares to the left or right), whereas S(%) is not transitive
on the warp strands (in fact these form three transitivity classes indicated by the letters X, ¥ and
Z). We express this by saying that & is weft-isonemal but not warp-isonemal. On the other hand,
the warp strands weave under and over the weft strands in the same pattern or sequence (one
over, one under, one over, one under, and so on) and hence, by an obvious extension of the
terminology, we may say that it is warp-mononemal. Just as an isonemal fabric is mononemal, so
a weft-isonemal fabric such as that shown is also weft-mononemal. Hence we see that a fabric
can be both warp-mononemal and weft-mononemal without being a mononemal fabric. On the
other hand, every mononemal fabric must be both warp-mononemal and weft-mononemal.
Similar remarks apply to isonemality; an isonemal fabric is necessarily both warp-isonemal and
weft-isonemal, but the converse statement is not generally true.

This terminology enables us to classify fabrics into ten types (I, M1-M3 and N1-N6) as
indicated in TABLE 1. The fabrics of FIGURE 6 are all of type I and in FIGURES 7 and 8 we show
fabrics belonging to eight of the remaining nine classes. The type that is missing is M2 and we
believe, but cannot prove, that no periodic fabrics of this kind exist. More precisely we
conjecture that every periodic mononemal fabric which is warp-isonemal is also weft-isonemal. The
reader may like to try to prove this conjecture; even if he does not succeed he will learn a great
deal about the possible structures of different types of fabric.

The ten types of fabrics
Isonemal fabrics

Type I: necessarily warp I and weft L.

Mononemal, but not isonemal, fabrics

Type M1: warp I and weft I.
Type M2: warp I and weft M, or warp M and weft L.
Type M3: warp M and weft M.

Fabrics which are not mononemal

Type N1: warp I and weft I.

Type N2: warp I and weft M, or warp M and weft L.
Type N3: warp I and weft N, or warp N and weft L.
Type N4: warp M and weft M.

Type N5: warp M and weft N, or weft N and warp M.
Type N6: warp N and weft N.

In the descriptions, I means isonemal, M means mononemal but not isonemal, and N means not mononemal. For
example, the fabric whose design is shown in FIGURE 9 is not mononemal, but it is weft-isonemal and warp-mono-
nemal. Hence it is of type N2.

TABLE 1.

Yet another kind of classification arises from considerations of balance; a periodic fabric is
called balanced if a fundamental block contains equal numbers of black and white squares. Thus
if a fundamental block is #n by m, then at least one of n or m must be even, and then the block
will contain ;nm white squares and nm black squares. Examples of balanced fabrics are given
in FIGUREs 2, 3, 5(a),(b), 6(a),(b),(c),(e),(f),(h),(k) and (m). In a balanced fabric equal
“amounts” of warp and weft show on each side, a property which is desirable in certain practical
applications. For a balanced isonemal fabric it is possible for Sy(%) to be transitive on the
strands of &, though not all such fabrics have this property. For example Sy(%) is transitive on
the strands for the fabric of FIGURE 6(a) but not in the case of the fabrics of FIGURE 11.
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|
A fabric which is weft-isonemal but not warp-isonemal. It is, however, warp-mononemal and so we see that it is of
type N2. (Design from Nisbet [c], FIGURE 16.)

FIGURE 9.

We have already retnarked on the great practical and theoretical importance of isonemal
fabrics, and the rest of this paper will be devoted to these. The commonest kinds of isonemal
fabrics are the twills and satins which will be discussed in the next two sections. After this we
shall describe a general method for finding designs of certain kinds of isonemal fabrics of which
the twills and satins are special cases. The method will yield many of the fabrics shown in
FIGURE 6 (such as the sponge weaves and sailcloth) but not all. At present a completely general
method of determining all possible isonemal fabrics of a given period is lacking, and the
problem of enumerating such fabrics seems to be completely intractable.

In the above discussion, and also in the rest of this paper, we shall try to adopt terminology
which conforms to that in use in the textile industry. Unfortunately this has not always been
possible, for not only do authors disagree on the exact meanings of words, but in some cases
they formulate their definitions so loosely that we were unable to understand, in a rigorous
mathematical sense, exactly what is intended. At the end of the paper we give a list of references
concerning the practical aspects of weaving. These are some that we have consulted, but apart
from Nisbet [c], which gives a large number of very interesting examples and attempts to be
comprehensive, they do not seem to us to be of particular interest or merit; the reader will easily
find other works of equal usefulness in any large library or bookshop.

Twills

The plain weave of FIGURE 2 may be regarded as the simplest example of the class of fabrics
known as twills. These can be easily described by the following scheme. Let 4 =(g,)*,, be any
two-way infinite sequence of zeros and ones. A fabric ¥ is an A-twill provided that in its design
the (x,y)-square is colored black if a,_,=1 and white if a,_, =0, or, alternatively, that these
relations hold after the design has been turned through 90°. Thus the plain weave is a twill with
A=(...010101...) and in FIGURE 10 we show designs of A-twills with A=(...000100
0...),(...0001010111...),(...1001001001...)and(...11100100111001001
1 1...). Of these the last two are periodic and the last one is also balanced.

The colorings of any two rows in the design of a twill differ only in that one is shifted
sideways relative to the other. If the rows are adjacent, then the upper row is obtained from the
lower by a shift to the right through one unit or, as we shall say, a 1-step to the right. A similar
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remark applies to the columns. It is this step-like structure that gives a twill its characteristic

appearance—it is covered with diagonal stripes. In fact some authors extend the meaning of the

word “twill” to include any fabric with a pronounced diagonal stripe, and Shorter [11] even

suggests a numerical measure of “twilliness” which indicates the obviousness of such stripes.
Our first result is very simple.

THEOREM 1. If A is a sequence of zeros and ones which contains at least two pairs of distinct
neighbors, then the A-twill ¥ is an isonemal fabric. Moreover ¥ is periodic with period n if and only
if A is periodic with period n, that is, if and only if a;= a; whenever i=j (mod n).

The proof is rather trivial. The existence of two pairs of distinct neighbors is necessary for it
is easily verified that ¥ does not “hang together” if the sequence A is either constant or one of
(...111000...)or(...0001 1 1...). These are the only sequences which have fewer than two
pairs of distinct neighbors. Translations of the plane, corresponding to the shifts or steps
mentioned above, show that S(¥) is transitive on the warp strands (warp-isonemal) and also on
the weft strands (weft-isonemal). Clearly S(%) also includes rotations by 180° in three dimen-
sions about lines parallel to x+y =0 (one of which is shown dotted in FIGURE 10) and these
interchange warp and weft strands, showing them to be equivalent. (Notice that this operation
interchanges the sides of the fabric.) The proof of the second part of the theorem is apparent

N [ ] [ [ ]
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<3 N u
< L [ |
N ] N
| 1] ||
N H N |
N [ | ] [ [ ]
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Designs of some A-twills.

(@) A4=(...0001000...)

(b) A=(...0001010111...)

(c) 4A=(...1001001001...)

(d)A4=(...1110010011100100111...)
The twills shown in (c) and (d) are periodic
with periods 3 and 8 respectively.

FIGure 10.
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from the diagrams, where the fact that g;=a; when i=j (modn) shows that both x—»x+n and
y—y+n are symmetries of the fabric which therefore has a fundamental block of size nXn.
Hence ¥ is a periodic fabric with period n.

In practical applications the sequences A are invariably taken to be periodic, and there is a
standard notation for these twills used by practical weavers. They are denoted by

< c, . . S
bl b2 M M bp
when a period of 4 consists, in order, of b, zeros, ¢, ones, b, zeros, ¢, ones ,...,b, zeros, ¢, ones

(see [c, Chapter 3]). Thus the fabrics of FIGURES 10(c) and 10(d) are ;' and %' twills,
respectively. In particular we note that 3b,+3c;=n, and that 3b,=3¢; is a necessary and
sufficient condition for the twill to be balanced.

It is an interesting combinatorial problem to determine the number #(n) of distinct twills of
any given period n. Here two twills are considered identical if one is the image of the other
under an isometry. Equivalently, they are identical if their designs can be made to coincide by a
rigid motion of the plane possibly followed by an interchange of the colors black and white. In
order to give a formula for #(n) we need to use Euler’s phi-function ¢(d) which is defined as the
number of positive integers less than, and prime to, d (see [6, p. 120]). (Thus, for example,
¢(12)=4 since m=1, 5, 7 and 11 are the only integers satisfying 1 <m <12 and gcd(m, 12)=1.)

It is well known that
1 1 1
d)=d{1—— }1—-—})---{1——]) -
o) ( Pl)( Pz) ( Pr)

where py,p,,...,p, are the distinct prime factors of d. It is also convenient to introduce a function
p(n)=1(3+(—1)") which takes the value 1 if n is odd and 2 if n is even. With this notation we
can now state the result.

THEOREM 2. The number t(n) of distinct twills of period n is given by
Hn) =252 LS g(dyp(d) 24~ 1,

where the summation in the second term is over all the positive integer divisors d of n.

n symbol
1
2T
2
ST
3 2 11
4l T 7T
4 3 21
S| T 711
| 5 431 22 3 21 111
T 2 11 11 3 21 111
7| 6541 32/ 4 31 22 211
1 211 11 3 21 21 111
g | 7 651 42 33 5 41 32 311 221 4 31
T 2 11 11 11 3 21 21 111 111 4 31
22 22 211 121 1111

31 2 211 211 1111

Symbols for all distinct twills of period n up to n=8.

TABLE 2.
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The proof of this theorem involves standard methods, and we only give a brief outline here.
The reader familiar with Pdlya’s Theorem and its applications, see [6, Chapter 5], will appreciate
that #(n) can be interpreted as the number of bracelets of n beads, each black or white, subject to
the additional proviso that two bracelets are not to be counted as distinct if one can be obtained
from the other by interchange of the two colors. The cycle index of the corresponding group of
the bracelet is

25 (82774 S o(d)sg)
or
1
3 (25t st 2+ T(d)sg)

according as n is odd or even. From this the result follows by application of a generalization of
Pélya’s Theorem (see [6, p. 157]). The function p(n) is introduced to enable the values for both
even and odd n to be written in one compact formula.

Theorem 2 yields, for example, ¢(1)=0, 1(2)=1, t(3)=1, t{(4)=3, t(5)=3, t(6)=17, t(7)=8 and
t(8)=17. These figures can be easily verified by actual construction (see TABLE 2).

In FIGURE 4(b) and FIGURE 11 we show three isonemal fabrics which are not twills but are
what we shall call color-alternate twills. In these, each row is obtained from the one below it by a
1-step to the right and an interchange of colors black and white. In other words, starting from a

Two color-alternate twills. Each row is obtained from the one below it by a 1-step to the right and an interchange of
the colors black and white.

FIGURE 11.

two-way infinite sequence A, the odd rows of the fabric are colored in the same way as for an
A-twill (as described at the beginning of this section) while the even rows are obtained by
reversing the colors in the corresponding rows of the A-twill. However, unlike the “ordinary”
twills, in a color-alternate twill the sequence A has to be chosen very carefully if the resulting
fabric is to be isonemal. We shall explain how this can be done in the fourth section of this
paper.

It is strange that color-alternate twills seem to have been rarely, if ever, used in practice, and
we can find no record of them in the literature. They have a characteristic and attractive
appearance which may be described as a modified herring-bone effect.

Satins

The next type of fabric to be discussed is known as a satin or sateen. (Authorities differ on
the distinction between the meanings of these two words.) An (n,s)-satin is a periodic fabric of

150 MATHEMATICS MAGAZINE



period n, in which the fundamental n X n block contains just one black square in each row, and
the position of that square is displaced from one row to the next above it by a step of s units to
the right (an s-step) (see FIGURE 12). Alternatively, an (n,s)-satin can be defined as one for
which the (x,y)-square in the design is colored black if and only if sy=x (modn). Of course,
exactly similar considerations will apply if the roles of the colors black and white are inter-
changed.

We observe that unless s is prime to » the resultant satin does not “hang together,” and that
there is no loss of generality in assuming that 1 <s < 7. The left inequality arises from the fact
that s=1 corresponds to the twills - discussed in the previous section, and the right
inequality because any (n,s)-satin is a mirror-image of an (n,n — s)-satin.

An easy counting argument (see Shorter [11]) shows that if an (n,s)-satin is rotated counter-
clockwise through 90° (interchanging warp and weft) then we obtain either an (n,¢)-satin or an
(n,n— f)-satin, where 7 is the (unique) solution of the congruence, st= *1 (modn) that satisfies
1 <t< 3n. By putting s=7¢ we obtain the following fundamental result.

P4

et

_!I_

‘[ H:!
i
s
=

| lh

B
N |
B
o

|8
-
=
H—
<
H
/
]
# |
—
T

(10,3) 5,2 13,5)
®)

5 7<|F . ' 4' _“
=EA0. 88 R e

®3 12,5) (15,4)
©
Examples of (n,s)-satins. The pair (n,s) is indicated near each diagram: (a) mononemal (not isonemal) satins, (b)
square isonemal satins, (c) symmetric isonemal satins. Of the three latter that are shown, two are rhombic and one is
rectangular.

FIGURE 12.
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THEOREM 3. An (n,s)-satin is isonemal if and only if s*=+1 (modn).

The two cases lead to isonemal satins with essentially different properties. If s>= — 1 (mod n),
then the satin is said to be square, and the symmetry group of the design contains 4-fold
rotations but no reflections or glide-reflections (see FIGURE 12(b)). The name “square” comes
from the fact that the centers of the black squares form a lattice of which one of the
fundamental parallelograms is a square. (In FIGURE 12(b) we have indicated one such square for
each of the three fabrics.) These square isonemal satins are characterised by the fact that —1is a
quadratic residue modulo #.

If, on the other hand, s>= + 1 (modn) then the satin is called symmetric. Its symmetry group
contains reflections and 2-fold rotations but no 4-fold rotations (see FIGURE 12(c)). The name
arises since each design is symmetric in a line parallel to x=y. The symmetric satins are
characterised by the fact that +1 is a quadratic residue modulo n. Symmetric satins can be
divided into two classes, rectangular and rhombic (or diamond) satins, according to the possible
shapes of the fundamental parallelograms of the lattices of centers of the black squares. (In
FIGURE 12(c) it will be seen that the first and third fabrics are rhombic, while the second is
rectangular.) Woods [12, p. T307] briefly discusses rectangular and rhombic satins which are not
necessarily isonemal. It is easy to distinguish between these two classes:

THEOREM 4. A symmetric isonemal satin is rectangular if n is even and s*=+1 (mod2n).
Otherwise it is rhombic.

We give an outline of the proof of this theorem, leaving the details to be filled in by the
reader. As before, we refer to each square in the satin by its coordinates, so the (x,y)-square is
colored black if and only if sy=x (modn). Let us consider the family of parallel lines
x +y =constant that contain black squares. One of these is x+y =0, and another is x+y=s+1
(because the (s, 1)-square is black). The line immediately to the right of x+y=0is x+y=d,
where d=gcd(s+ 1,n). The satin will be rectangular if and only if the (3d, 3d)-square is black
(see FIGURE 12(c)) which implies that 4 must be even, so n is even and s is odd. But the
(3d, }d)-square is black if and only if 2ds=1d (modn), that is, 3d(s —1)=0 (modn). Substitut-
ing for d we get the equivalent condition n|gcd(3(s?>— 1), 2n(s — 1)), or n|3(s?—1) (because s is
odd and therefore 1n(s—1) is necessarily a multiple of n). This can be rewritten as the stated
condition s?=1 (mod2n), so completing the proof of the theorem.

In order to enumerate the isonemal satins for a given n we have to determine the number of
solutions of the congruence and inequality s’=+1 (modn), 1<s<3in, and this is easily
achieved using known results on quadratic residues (see, for example, Bachmann [2, pp. 172,
187, 198)).

THEOREM 5. For a given n the number of distinct isonemal (n,s)-satins is u(n)+ v(n), where
u(n) is the number of square satins and v(n) is the number of symmetric satins. If n=
2pfpf=- - - pf is the factorization of n into distinct primes 2,p,,p,,....p;, then

0 ifa >2 or if p;=3 (mod4)
for some i with 1 <i <,

27" ifa<1landif p;=1(mod4)
fori=12,...j,

u(n) =

and

Y-1—1 ifa=0ora=1,
o(n) ={2-1 ifa=2,
V-1 ifa>3.
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Thus, for example, the smallest n for which there exist two distinct isonemal square satins is
65, the satins being (65, 8) and (65, 18). There is also a (thombic) symmetric (65, 14)-satin, and 65
is the smallest n for which both square and symmetric satins exist. The smallest value of n for
which there exists more than one symmetric satin is 24, and the satins are (24,5), (24,7) and
(24, 11). Two of these are thombic and one is rectangular, see TABLE 3.

The number of distinct mononemal (but not isonemal) satins of period n can also be found

(see Lucas [8]).

n s n S n s
5|2a 42 [5,11,13¢ 73 [2,3,4,5,6,7,8,10,11,13, 14,
712 432,3,4,5,6,8,9,10,12,15 15,16,17,19,25,27a,31
8{3b 44 {3,5,7,13,21c 74| 3,5,7,9,11,13,19,23,31a
9|2 45(2,4,7,8,14,19 75 | 2,4,7,8,11,13,14,17,26b,29
10 | 3a 46 |3,5,7,11,17 76 | 3,5,7,9,13,21,23,27,37c
1123 47(2,3,4,5,6,7,9,10,11,13,15 | 77 | 2,3,4,5,6,8,9, 10,12, 15, 16, 18,20,25,34b
12 | 5¢ 48 | 5,7b,11,17¢,23b 78 | 5,7,17,19,25¢,29
13 |2,3,5 49 12,3,4,5,6,9,13,17,18,20 |79 | 2,3,4,5,6,7,8,9,11,12,14,15,18,19,23,
143 50 | 3,7a,9,13,19 27,28,29,32
15 | 2,4b 512,4,5,7,8,11,16b,20 80 | 3,7,9b,11,13,17,19,31c,39
16 | 3,76 52 {3,5,7,9,11,25¢ 812,4,5,7,8,11,13, 14, 17,26, 31,32, 35
17 | 2,3,4a,5 532,3,4,5,6,7,8,10,11,12,14, | 82 | 3,5,7,9a,11,13,17,21,23,31
185 17,23a 83 2,3,4,5,6,7,8,9,10,11,13,16,17,18,19,
192,3,4,7 54 5,7,13,17 20,22,24,27,30
20 | 3,9¢ 55 (2,3,4,6,7,12,13,16,19,21b | 84 | 5,11,13¢, 19,25,29¢, 41c
21 {2,4,8b 56 | 3,5,9,13b, 15¢,17,27b 85 (2,3,4,6,7,8,9,11,13a, 16b, 18,22,23,24,
22(3,5 57 {2,4,5,7,10,11,13,16,20b 26,29,38a
232,3,4,5,7 58 | 3,5,7,9,11,15,17a 86 | 3,5,7,9,11,13,15,21,25,27
24 | 5b,7¢,11b 59 [2,3,4,5,6,7,8,9,11,14,18 |87 | 2,4,5,7,8,10,13,14,16,17,19,23,28b,37
25 (2,3,4,72,9 19,24,25 88 [3,5,7,9,13,15,17,19,21b,23¢,43b .
26 | 3,5a,7 60 | 7,11¢,13,19¢,29¢ 89 | 2,3,4,5,6,7,8,9, 12,13, 14, 16,17,20,23,
2712,4,58 61 | 2,3,4,5,6,7,8,9,11a,13,16, 24,25,27,28,29,34a, 36
28 |3,5,13¢ 17,21,22,24 90 | 7,11,17,19¢,23,29
29 (2,3,4,5,8,9,12a |62 (3,5,7,11,13,15,23 91 (2,3,4,5,6,8,9,11,12, 16, 19,20,22,25,
30 [7,11¢ 63 | 2,4,5,8b,10,11,13,17,20 27b,31,32,36
31(2,3,4,57,11,12 |64 3,57,11,15,19,23,31b |92 |3,5,7,9,11,15,17,19,21,33,45¢
32|3,5,7,15b 65]2,3,4,6,7,8a,9,12,14b,17, | 93 | 2,4,5,7,8,10,11,13,14,16,19,22,25,32b,
33 {2,4,5,7,10b 18a,19,21 34
34 (3,5,9,13a 66 | 5,7,17,23c,25 94 | 3,5,7,9,11,13,15,23,33,35,39
35 |2,3,4,6b,8,11 6712,3,4,5,6,7,8,9,10,12,13, | 95 | 2,3,4,6,7,8,9,11,13,14,17,18,23,29,
36 | 5,11,17¢ 14,16, 18,23,29 31,39b,41,42
37(2,3,4,5,6a,7,8, |68 |3,57,9,11,13,19,33¢ 96 | 5,7,11,13,17b,23,31c,47b

10,13 69 | 2,4,5,7,8,11,13,19,20,22b,| 97 | 2,3,4,5,6,7,8,9,10,11,13,17,18,19,20,
38(3,5,7,9 28 21,22a,23,25,26,28,30,33,35
39 |2,4,5,7,14b,16 |70 [3,9,11,13,17,29¢ 98 | 3,5,9,13,17,19,25,27,37,41
40 [3,7,9¢,11b,196 | 712,3,4,5,6,7,8,11,15,16,17,| 99 | 2,4,5,7,8,10b, 13,16, 17, 19,23,28,29, 32,
41(2,3,4,5,6,9, 11,12, 20,21,22,23,26,28 40

13,16 72 {5,7,11,17¢,196,23,35b (100 | 3,7,9,13,17,19,27,29,39,49¢

A list of all the (n,s)-satins with n < 100. If the value of s is followed by a, b or ¢, then the satin is isonemal. The
letter a means that the satin is square, b that it is rhombic and c that it is rectangular.

VOL. 53, NO. 3, MAY 1980

TABLE 3.

163



THEOREM 6. The number w(n) of mononemal (but not isonemal) satins of period n is given by
w(n)=1[¢(n) —2u(n)—2v(n)—2), where ¢ is Euler’s phi-function.

The proof of Theorem 6 depends upon the observation that to each mononemal (but not
isonemal) satin of period n correspond exactly four distinct integers less than, and prime to, n,
namely s, n—s, t and n—¢ in the notation used above. On the other hand, isonemal satins of
either kind correspond to two such integers, and the correction —2 arises from the exclusion of
the plain weave.

In TABLE 3 we list all possible satins, both mononemal and isonemal, for values of » < 100.
This extends the table in Lucas [9], besides giving additional information. (Note that the
corresponding table in Lucas [8] contains many errors.) We are indebted to M. G. Shephard for
help with the computations needed in the preparation of TABLE 3. Examination of this table
reveals an arithmetical curiosity concerning satins. Let n’>1 be any divisor of » and s’ be the
remainder on dividing s by »’. Then if the (n,s)-satin is square, or symmetric, then the
(n’,s")-satin is also square, or symmetric, respectively (compare Woods [12, p. T306]). Thus, for
example, as the (48,17)-satin is symmetric, so is the (12,5)-satin, and as the (85,38)-satin is
square, so is the (17,4)-satin. The proof of this result is an elementary exercise.

We remark, in conclusion, that a related family of isonemal fabrics can be constructed from
the isonemal square satins by the process of “doubling.” For this we replace every square in the
design by a 2 X2 block of squares all colored in the same way. Thus the fabric shown in FIGURE
6(j) is obtained by doubling the (5,2)-satin of FIGURE 12(b).

Twillins
Nisbet [¢] remarks on the fact that a fundamental block of an (n,s)-satin can be obtained

from that of an — twill by suitably rearranging the rows (weft strands) or columns (warp

n—1

strands) (see FIGURE 13). He then generalizes this procedure by starting from any twill, and so
obtains a class of fabrics called rearranged twills. For example, FIGURE 8(f) shows a fabric
obtained by rearranging the warp strands of the twill 5/ of FIGURE 3. Most rearranged twills
are, as in this example, not isonemal (or even mononemal) and this suggests the following
interesting combinatorial problem: How can one determine the twills % and the rearrangements of
the weft (or warp) strands of ¥, which lead to isonemal fabrics? Any isonemal fabric which can be
constructed in this way will be called a twillin being a generalization of both a twill and a satin.
The purpose of this section is to explain how al/ twillins of a given period n can be found.

Let us begin by considering which permutations of the weft strands of a twill are admissible.
Let B, be a fundamental n X n block for the twill &, and let B; be a fundamental block obtained
from B, by permuting its rows. Without loss of generality we may suppose that the first row of B,

is the first row of B,, and the second row of B; is the (s+ 1)st row of B, (1 <s <n—1). Then this

— it

Rearranging the rows (weft strands) of a twill so as to form a satin.

i

- N W A U O &
S N S T - - N

FIGURE 13.

154 MATHEMATICS MAGAZINE



second row is obtained from the first by an s-step to the right (see FIGURE 13 for the case s=3,
n=23). If the resulting fabric is to be weft-isonemal, then it is clearly necessary that every other
row of By is obtained from the previous row by an s-step to the right with the same value of s.
Thus the permutation of the rows may be written

(l I+s 1+42s --- 1+(n—1)s)
1 2 3 n

where the integers in the top row are reduced modulo n. Note that s must be prime to n since
otherwise the numbers in the top row of the above array would not be distinct and so we would
not have a proper permutation. We shall use the term (n,s)-twillin for an isonemal fabric of
period n constructed by applying s-steps to the rows of B, in this way.

Now let us consider how the twill & can be chosen so that the resulting fabric is isonemal. In
order to illustrate the method we shall consider in detail the special case n=38, s=3. We begin
with an 8 X8 block of squares and number the squares in the first (lowest) row with the integers
1,2,...,8. These numbers are repeated in the other rows using 3-steps to the right between
adjacent rows. The resulting 8 X 8 array will be called an (8,3)-number square (see FIGURE 14).
We observe that every row and every column of this square contains all the integers 1,2,...,8
just once—this is a consequence of the fact that s was chosen prime to n. Our objective is to
convert this number square into a fundamental block for a twillin by replacing each integer by a
color (black or white).

" For a design produced in this way to be mononemal it is necessary and sufficient that the
sequence of colors in each column (warp strand) should either be the same as the sequence of
colors in each row (weft strand) or should be so after the colors black and white have been
interchanged. This can be achieved in several ways. Let us begin, for example, by seeing if it is
possible for the first column of the number square (read upwards) to correspond to the first row.
We write these thus,

first row: 1 2 3 4 5 6 7 8
first column: 1 6 3 8 5 2 7 4

and note that the coloring will be the same if 2 and 6, and also 4 and 8, represent the same color.
To put it another way, if the above scheme is thought of as representing a permutation and this
permutation is written in cycle notation (1)(2 6)(3)(4 8)(5)(7), then all integers in the same cycle
must represent the same color. Let us label the six cycles, 4, B, ..., F and make the correspond-
ing substitutions in the number square of FIGURE 14. We obtain the block labelled I in FIGURE
15. This will be called an (8, 3)-letter square. By construction it has a property corresponding to
mononemality, namely that if the plane is covered by translates of this block so as to form a
tiling & of square tiles labelled with the letters 4, B,..., F, then each row and column of tiles in
9 will contain the same sequence of letters in the same order. In fact, in this case, a much
stronger property corresponding to isonemality also holds; the symmetry group of & (that is, the
group of isometries which map each tile of I onto one bearing the same letter) is transitive on
the rows and columns of J. This transitivity property is a consequence of the fact that 32=1
(mod8): It will always occur whenever we are constructing (n,s)-fabrics with s2= 1 (modn).
The proof of this assertion follows in exactly the same way as Theorem 3.

In the letter square we now substitute the colors black or white for each of the letters
A,B,...,G. However we do this, subject only to the overriding condition that the resultant fabric
must “hang together,” we will obtain a fundamental n X n block for an (8, 3)-twillin. Hence if we
can determine all possible letter squares, it will be possible to obtain the designs of all
(8,3)-twillins by systematic substitution of colors for letters.

At first sight it appears that there are a great number of possibilities, but many of these can
be eliminated immediately. For one thing, we can ignore all twills and satins since these have
already been described and enumerated in the previous two sections, and for another, very many
designs are repeated. We do not, of course, consider as distinct fundamental blocks that can be

VOL. 53, NO. 3, MAY 1980 155



4156 |78]1]|2]3 D|E|B|F|D|A|B|C D|\A\D|E|B|A|B|C|.
7]8|1]2|3]4]5]6 Flp|a|B|c|D|E|B| [E|B|4a|B|C|D|4|D]|
2(3[(4|5[617]8]1 B{C|D|E|B|F|D|A B|C|D|\A|D|E|B|A
516 |7(8|1(23(4 E|B|F|D|A|B|C|D A|D|(E|B|(A|B|C|D
8|1(2|3|4|5|6]|7 D|{A|(B|C|(D|E|B|F B|{A|B|C|D|A|D|E
3145|617 |8]1]2 C|D|E|B|F|D|A|B C|D|A|D|E|B|A|B
6|17 18|1]2|3]|4}5 B|F|D|A|B|C|D|E D|E|B{A|B|C|D|A
112(|3|4|5|]6]|7]|38 A|{B|C|D|E|B|F|D A|B|C|D|A|D|E|B
I I
The (8,3)-number square. The two (8,3)-letter squares that can be derived from the number
square shown in FIGURE 14.
FIGURE 14. FiGure 15.

made to coincide by cyclic rearrangement or reversal of the rows or columns, or by interchang-
ing the colors black and white.

From the letter square I of FIGURE 15 substituting colors for letters yields only four twillins,
namely those shown in FIGUREs 16(a), (b), (c) and (d). Below each diagram we have indicated an
allocation of colors by the simple device of separating the letters which represent each of the two
colors by a hyphen. By way of example, we note that for the letter square I, 4-BCDEF is a satin,
B-ACDEF is a twill, and AB-CDEF is identical with AD-BCEF and also with ADEF-BC since
each of these is an isometric image of the others.

To construct other letter squares, instead of identifying the colors in the first row with those
in the first column, we do so after applying a cyclic permutation to the latter. Equivalently we
may use any of the other seven columns in the number square. Further possibilities arise if we
read the columns downwards instead of upwards, so eight more cases need to be considered.
Some of these lead to letter squares that can only represent twills (for example if we identify 1 2
34567 8with47258361)and we can reject these. Systematic investigation of the
possibilities leads to just two letter squares, namely those shown in FIGURE 15. (The second of

(a) 1 AC-BDEF

Five designs for (8,3)-twillins de-
rived from the letter squares of
FIGURE 15. In each case we have
indicated one possible method of
substituting colors for letters.

(d) I ABC-DEF (¢) 1 BC-ADE

FIGURE 16.
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these comes from identifying the first row 12 3 4 5 6 7 8 with the second column 58361472
of the number square read downwards.) These lead in turn to the five fundamental blocks of
F1GURE 16; for each we have indicated one possible allocation of colors.

There is still another possibility which we have not yet considered. The fabric can be
isonemal if there is an isometry which maps the rows of the design onto the columns with colors
reversed. This cannot happen in the case of an (8, 3)-twillin, but does occur for (10, 3)-twillins
(see FIGURE 17). Identifying the first row of the number square with the second column (read
upwards), we obtain

1 2 3 4 5 6 7 8 9 10

2 9 6 3 10 7 4 1 8 5,
leading to the permutation that can be written as three cycles (1 2 9 8)(3 6 7 4)(5 10). Instead of
allocating the same color to all the numbers in a cycle, we do so alternately; this is possible since
all the cycles are of even length. Thus we write 4 for 1 and 9, and 4’ (the opposite color) for 2
and 8, and so on. This leads to the letter square of FIGURE 17(b), and in FIGURE 17(c) we show
an example of the fundamental block of a design obtained from this.

4] 51 6{ 7{ 8] 9]10| 1} 2} 3 B'|C |B’(B |4’|A |C’{4 |4’ |B
7| 8| 9/10( 1| 2| 3| 4] 5| 6 B |A'|A |C'|A |A'|B |B’'|C |B’
10] 1] 2| 3| 4] 5| 6| 7| 8| 9 C’'|A |A’|B |B’|C |B’'|B |4’ |4
3 4] 5| 6| 7 8 9[10[ 1| 2 B |B'|C |B'|B |A’|4 |C’'|4 |4’
6 7| 8] 910 1| 2| 3| 4| 5 B’|B |A’|A |C’|4 |A’|B |B’|C
9[10{ 1] 2( 3( 4| 5| 6| 7| 8 A |C'|A {A"\B |B’|C |B'|B {4’
2 3|1 4] 5| 67 8 9/10] 1 A’ (B |B'|C |B’'(B |A’|4 |C’|4
5| 6| 7) 8/ 9{10| 1| 2| 3| 4 C|B'|B |A4'|4 |C'|4 |A'|B |B’
8| 9(10] 1| 2f 3| 4| 5| 6( 7 4’4 |c’|4 |a’|B |B’|C |B’|B
1| 2| 3| 4| 5| 6| 7| 8] 9(10 A |A’|B |B'|C |B'|B |A’|A |C’
(@) ®) ©

The construction of a (10,3)-twillin for which the symmetry operations which map rows into columns interchange the
colors black and white. The fabric in (c) is given by the coloring 4-BC. It is also given by the coloring B-AC, while
the sponge weave of FIGURE 6(c) is given by the coloring C-4B.

FIGURE 17.

An analogous method to that described above can be used to construct color-alternate
twillins. (The color-alternate twills mentioned at the end of Section 2 are examples of these with
the value s=1.) A color-alternate (n,s)-twillin is defined as an isonemal fabric of period » in
which each row is obtained from the one below it by an s-step to the right and an interchange of
the colors black and white. For example, let us consider the case n=8 and s=3. Starting from
the number square of FIGURE 14 we add primes to the integers in alternate rows (to signify that
the colors are interchanged) (see FIGURE 18(a)) and then construct a permutation as before by
comparing one of the columns with a row. In the example shown in FIGURE 18 we have
identified the first row with the first column read upwards to obtain the permutation (1)
(26')(3)(48)5)(7). Again allocate letters 4,B,...,G to these six cycles, and so obtain the
letter-square of FIGURE 18(b). As usual, a prime indicates that the colors must be reversed; thus
B is substituted for 2 and 6’, which means that B’ is substituted for 2’ and 6. From the letter
square any allocation of colors to the various letters (subject only to trivial restrictions) will yield
an isonemal fabric, that is, a color-alternate twillin. An example of such a fabric is given in
FIGURE 18(c) along with the corresponding allocation of colors. As before, there are many
possibilities to be explored, though the number of distinct fabrics obtained in this way is not
large.
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415167 | 8|1 |23 D' | E | B F | D |A |B|C
718 (1 2 314 (516 F D |4 B C |D |E |B
2|3 |45 |e|T |8 |1 B |C |D | E |B F' | D | A
516 |7 8 112 (3 ]4 E | B |F D |4 B Cc | D
g2y ¥y (456 |7 D (A |B | C |D |E |B |F
3145 6 718 |12 C |D [E B | F | D | A B ] u
6|7 |¥ ) K I O I - B | F | D A" | B | C"| D | E N N
1123 4 5 (6 7|8 A B c D E |B |F |D [ ]
@ ®)

The construction of a color-alternate (8,3)-twillin. The design of (c) is given by the coloring ABDEF-C.

FIGURE 18.

The constructions described above for twillins and color-alternate twillins are very simple and
lead to many attractive designs for fabrics. For example, the designs of FIGUREsS 16(c), (d), 17
and 18 seem to be especially pleasing and we find it hard to believe that they have not been used
by some practical weaver—yet we can find no mention of them in the literature.

Although the above method enables us to construct all twillins and color-alternate twillins, it
does not lead to a solution of the problem of enumerating these fabrics. In fact, since the same
twillin can arise in many different ways and there seems to be no way of deciding just how many
such ways, the enumeration problem seems completely intractable. And, of course, one must
remember that, as we remarked earlier, the twillins and color-alternate twillins compose only a
small part of the large class of isonemal fabrics.

New Viewpoints and Questions

In this section our outlook changes. Instead of constructing isonemal fabrics with a given
period, we suppose that we are given any block Q of squares colored black and white, and we
ask whether this block can form part of the design of an isonemal fabric. The following result,
which implies that the answer is in the affirmative, hints at the enormous number of isonemal
fabrics of a given period that exist.

THEOREM 7. Let p and q be relatively prime integers. Then any p X q rectangular block B of
black and white squares is part of the design of a twillin of period 2pq.

If a block Q of squares is not of the required shape, we can apply the theorem by determining
the smallest p X g block B (with p and q relatively prime) that contains it. In particular, if Q is
square of side k, then we can take p=k, g= k-1, and the period of the twillin is then 2k(k + 1).

The constructive proof of Theorem 7 is very simple. It is based on the existence of isohedral
tilings I by rectangular tiles (see FIGURE 19(b) for tiles of size 3X5). Given any 3 X5 block B
such as that in FIGURE 19(a), we replace each tile of I by a copy of B as shown. It is easily
verified that the resulting design is that of a fabric (in that it “hangs together™) unless B consists
entirely of black or white squares, and that the fabric is a twillin of period 2pq. The exceptlonal
(monochromatic) blocks are easily dealt with by considering suitable satins.

It is probable that, in general, the period 2pg cannot be greatly reduced, since each strand
must contain copies of the p rows of B (each of length g) and of the g columns of B (each of
length p). However, for small values of p and g, better results may be obtained by ad hoc
methods. For example, every 2 X2 block Q is contained in the design of either a twill 5* or the
duck weave (FIGURE 6(h)). These are of periods 3 and 4 respectively, which improves the
estimate 2(22+2)=12 given by the theorem. We do not know the minimum period for 3X3

158 MATHEMATICS MAGAZINE



IS

® ©

The construction of a fabric design which incorporates any given block of squares colored
black and white. Here a 3 X5 block (a) is given. In (c) we show how copies of this block
may be substituted for the tiles in a tiling (b) to obtain the design of a (24, 11)-twillin.

(@)

FIGURE 19.

blocks, though we should not be surprised if it can be reduced to a value much less than that
(2(3%+3)=24) given by the theorem.

A related but apparently very difficult problem is to determine for each k the minimal period
of an isonemal fabric ¥ which is k-umiversal in that it contains every kX k block of squares
colored black and white in all possible ways. That universal fabrics exist is an easy consequence
of THEOREM 7, for we need only “stack” all possible kX k blocks together to form a large block
0, and then proceed as before. But the period of the fabric obtained in this way is clearly wildly
larger than necessary. There are two possible interpretations of this problem. Of the 16 possible
colorings of a 22 block (see FIGURE 20) only four are essentially distinct in the sense that all
the others can be obtained from these four by a rigid motion or an interchange of colors. Four
such essentially different blocks are shown in the top row of the diagram. We can ask either for
all sixteen blocks to occur in the design of a fabric ¥ (in which case we shall call ¥ strongly

axliuali-"N .0 .
G FECLHA

The sixteen different 2 <2 blocks of black and white squares. Only four blocks are essentially different (for example,
the first four in the top row); all the other blocks can be obtained from these by a rigid motion or, possibly, by
interchange of colors.

FIGURE 20.
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(b)

Designs of two 2-universal fabrics. That shown in (b) is a strongly universal twillin. It is believed that these universal
fabrics have the smallest possible periods (6 for 2-universal and 10 for strongly 2-universal).

FIGURE 21.

2-universal) or for only four essentially distinct ones. (An example of a fabric which is
2-universal in this latter sense is shown in FIGURE 6(n).) The theory of pantactic squares (see
Astle [1] and Bouwkamp et al. [3]) is clearly relevant to the discovery of strongly universal
fabrics, and we remark on the curious fact that the minimum period of a strongly 2-universal
fabric only just fails to be four! The “design” of FIGURE 5(b) is strongly 2-universal, but
unfortunately does not represent a fabric that “hangs together.” The strongly 2-universal fabric
of least period that we have been able to find has period 10 (see FIGURE 21(b)), while for a
2-universal fabric (not strongly 2-universal) the corresponding period is 6 (see FIGURE 21(a)).
For 3-universal fabrics we have no results, or conjectures -of any kind, and this remains a
completely open field for investigation.

Throughout the whole of this paper we have restricted attention to fabrics in which the warp
and weft strands are perpendicular to each other. This is not necessary, and there exist isonemal
fabrics with oblique strands (see FIGURE 22). In fact every fabric whose design admits, as a
symmetry, reflection in a line parallel to x +y =0 or x —y =0 remains isonemal if its strands are
made oblique. Thus all the twills, the symmetric isonemal satins, and many of the twillins, can
be made into “oblique fabrics.”

WY

404004404044
pprapmrl WU

strands.

FIGURE 22.
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We conclude with some general remarks. It is clear that the material in this paper is only the
beginning of a large subject; generalizations in many directions are possible and most of these
are completely unexplored. Why is class M2 of mononemal fabrics empty? How many distinct
(n,s)-twillins exist for small values of #» and s? What are the possible symmetry groups of each of
the ten types of fabric? Are there any interesting 2-isonemal fabrics (those in which the strands
form two transitivity classes under the operations of the symmetry group) apart from the
mononemal satins and those that can be obtained by “doubling” any isonemal fabric?

There is no need to restrict attention to the plane. For example a fabric in the shape of a
torus can be constructed from two sets of “annular” strands, or even from just two strands if
these are allowed to “spiral” round the torus. Recently Jean J. Pedersen has constructed
isonemal fabrics on polyhedral surfaces [10], but there still remain many open problems
concerning fabrics on manifolds and other surfaces in three dimensional space.

Yet another possibility is to investigate fabrics in which the strands lie in more than two
directions. (Practical examples of these occur in basketry.) Some results on such fabrics are
already known and will be described in a forthcoming paper by the authors. We can already say
that in this case a large number of new isonemal fabrics exists.

We are grateful to the referees for suggesting several improvements to this paper, and to Paul
J. Campbell for drawing our attention to the work of Lucas [7, 8, 9] and Woods [12] concerning
fabrics. Both these authors mention some earlier literature, mainly concerned with satins, but
this seems to be almost inaccessible.

The material in this paper is based on work supported in part by the National Science Foundation Grant No.
MCS77-01629 AOL
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