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THE NINETY-ONE TYPES
OF ISOGONAL TILINGS IN THE PLANE!
BY
BRANKO GRUNBAUM AND G. C. SHEPHARD

ABSTRACT. A tiling of the plane by closed topological disks of isogonal if its
symmetries act transitively on the vertices of the tiling. Two isogonal tilings
are of the same #ype provided the symmetries of the tiling relate in the same
way every vertex in each to its set of neighbors. Isogonal tilings were
considered in 1916 by A. V. Subnikov and by others since then, without
obtaining a complete classification. The isogonal tilings are vaguely dual to
the isohedral (tile transitive) tilings, but the duality is not strict. In contrast
to the existence of 81 isohedral types of planar tilings we prove the following
result: There exist 91 types of isogonal tilings of the plane in which each tile
has at least three neighbors.

1. A plane tiling § = (T;|li = 1, 2, ... } is called isohedral if its symmetry
group S(J) acts transitively on the tiles T; of I, and is called isogonal if
S(9) acts transitively on the vertices of 9. In [5] we showed that there exist
81 types of isohedral tilings in the plane. The main purpose of this paper is to
establish the following result.

THEOREM 1. There exist exactly 91 types of normal plane isogonal tilings. Of
these 34 are also isohedral, and 63 can be realized by convex tiles.

Here “normal” means that the tiling is bounded (that is, the tiles are
uniformly bounded in diameter and width), and the intersection of any two
tiles is either empty or is an edge or a vertex of each. Thus normal tilings
cannot contain digons or vertices of valence two.

The classification of isogonal tilings is based on the idea that a “type” of
tiling is determined by the way that S (9) relates any vertex to its neighbors.
To make this concept precise we shall need to define “vertex symbols” and
“adjacency symbols” in an analogous way to that in which we introduced
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336 BRANKO GRUNBAUM AND G. C. SHEPHARD

TABLE 1
Vertex Edae
List Adjacency Space . Tile Reali-
No. | Net grg;abzrlid Symbol group :m:; transitivity Aspects sations |References
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
161, | (35 | e dretftatvtct | aByoBy | T,T,T T,TyT, {T3.10:T,,10 "
*b'ic#d#e*f# T T
a — -
16 2. b a"f'e"dct | pg aaBryB | TyTTyT,T,T, [ T)a10IRiT, 000 | N
- + e - -
16 3. ceta bt | pg aByBoy [ TT,IT,NT, [ T).000RT, 00 | N
4o X
16 4. atetctdotet | p2 asysse | Ty T,T,T,T, [ T).207,.20 ¢ $K34,51
+ + - -t .
16 5. et | pog | oBryBS | TyTIT,T,T,Ty | T .202RT,,202R | € K33
+ - ¥pe - - .
16 6. a*ecttbd | pog | o8BS | TyTT,T,TIT, |Ty.202R:T,.20R | € K32
+ 4+ b+ K K
16 7. ptatdetrtet | p3 aaBByy | TyTTTaT T, | T7030iT,005T5, | € sK13
lD;TQ.ID
16 8. <, O p2 ofyaBy | TTTTTT |[T,20 C,IH 83| $K35,52
+ + + .+ + 4+
16 9. abcabec ateb” Pag aBlaBf TTTTTT T,202R N,IH 86
T
3 + 4 .
16 10. Attt | B p3 aooooa | T,y T,TT, | T40105T,,00 N
16 1. Cs at 6 aomoee | TTTTTT |T,20 N,IH 90
+ + + + + +
aAaaaaaa
16 12, 0§ dcba o o888 | TTTTTT |[T,00R N,IH 83
+ 4 e -
16 13. ab'c'dc'd dv'cta pmg | oByayd8 | TTTTTT |T,202R C,IH 85| SK30
16 14. o} ¢ba” e aBoafa | TyT,TyT,TyT, [ Tq003T500 N
L K SN
16 15. abecba | oty pmg | MBS | LTI | T2iT,.2 c i3l
16 16. . ac'bt p3im | assBBa | TyT,TaT,TaT, | TpabiTp33 Tyl | € sK12

“tile symbols” and “adjacency symbols™ in the classification of isohedral
tilings.

At first sight this method of classification may appear to be somewhat
elaborate. However, this is a natural consequence of the fact that it is a
simultaneous refinement of all previously proposed classifications and also of
the ones that may seem more natural-such as by the crystallographic symme-
try group or by the net of the tiling. Moreover, it seems to be the simplest
method of codifying one’s intuitive concept of a type of tiling, and appears to
be precisely what many previous authors have attempted to formulate [1], [6],
[8], [9]. It turns out that the use of adjacency symbols provides a convenient
algorithmic method of classifying the tilings, and is one which has many
extensions and variants.

The use of vertex and adjacency symbols enables us, in §2, to show that
there exist exactly 93 combinatorial types of isogonal tilings. These are dual to
the 93 combinatorial types of isohedral tilings determined in [3].

To find the isogonal tilings it is necessary to examine each of the 93
combinatorial types in turn, and see if it is possible to realize it by “shaped
tiles”. In spite of assertions to the contrary-see, for example, Fedorov [2],
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Vertex Edae Tile

List Adjacency Space Reali-
ol Nee 9"2;{:{);2‘4 Symbol group t"':"‘:;' transitivity Aspects sations [References
M | () (3) (4) (5) (6) (7) (8) (9) (10)
16 17.] (3% D, ab* cm | oBBaBE | TTTTTT | T.2 ¢, IH 91 SK25
cont. PR
ab b ab'b
S
16 18. 03 ba p3lm | cmomoa | TTTTTT | T,10R M, IH 89
ababab
A
1 D - .
6 19. P oL pant | emmmon | TyTT\TTT, | Tydi Tl N
adaaaa
16 20. Dg a pém oo | TTTTTT T,2 C, IH 93] SK7,512
|adaaaa
I 4 3 R R . .
621, (3*.6) et |6 € b*d*a p6 agBya | HTT,TT H,103T,.60:T,,20 | € k8,510
3 42 -t - -t
16 22. (3°.4%) [ aeach cm aByY8 QQTTT Q,1;T,100R N
++ 4+ +
abcde
16 23. atefcta'st | p2 afyés | QQTTT 0.1057,20 c $K56,S1
16 24. ae*c*d'bt | pmg | asys8 | QQTTT 0.2:T,202R c k28
16 25. a'e*d"cd” | pog | o8By | QQTTT 0.101R;T202R 3 SK54
16 26. 0 ab’c’ am | o8y | QQTTT | QuT.2 c sk23
ab*etebe
16 27.|6%4.324) € atdebe” pag aByBy TTQTQ Q,1D1R;T,202R [4 SKSO
FRR R
abcde 4 4+ 4+
16 28, a*c*bte’d pa aBByy | TTQTQ, Q;,10:02,10;7,40 | C $X20,55
16 29. o ac'h’ plg | a8BB8 | TTQTQ Q,101R;T,4 c SK19
+ -
abeccd

Heesch [6)-duality cannot be used here, even in the convex case. This is
borne out by the fact that whereas there are 81 types of isohedral tilings of
which 47 are convex, there are 91 types of isogonal tilings of which 63 are
convex. We shall display our results in tabular form and we also show, in
Figure 5, diagrams of all 91 types of isogonal tilings. For those which are
isohedral we give reference to Table I of [3]. The two combinatorial types of
tilings which are not realizable as isogonal tilings (IG 18 and IG 73 in Table
I) are also isohedral, and may be represented by marked isohedral tilings.
These are shown in Figure 6.

In the third section we briefly examine isogonal tilings which are not
normal. It is easy to see that there exist no bounded isogonal tiling with
vertices of valence two, but there are infinitely many types with digonal tiles.
The main result of this section is a description of how all these may be
constructed by a simple process from the 93 combinatorial types already
determined.

The word “isogons™ was originally introduced by Fedorov [1] to denote
isogonal tilings by convex tiles, or convex isogonal tilings, as we shall call
them. Several attempts have been made to enumerate the different types of
these, for example, see [1], [2], [5], [7), [8]. Incomplete definitions and careless
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Vertex Edge Tile

List Adjacency | Space ot Reali-

No. Net grg;;b:;\d Symbol | group g:"':; :::'i't;’ Aspects sations | References

(1) (2) (3) (4) (5) | (6) (7) (8) (9) (10)

16 30. {(3.4.6.4) | E abd*et [p3am [ o8y | QHQT H,1;03;T,101R ¢ K11
a'tetet 4 44 4+ :

16 31. vtata*ct |ps | w88 | quaT H,10;0,30;T,20 ¢ $K36,510

16 32, 0, ab” pém | coBB QHQT H,1;Q,3;T,2 c sk2
atab'b”

16 33.{(3.6.3.6)| E d'c’b'at | p3 | oBBx | TiHTH H,105T;,10;T,,10 ¢ $K38,58
a"b"c"d"

16 34. c, btat p6 |omm | THTH H,10;T,10 N
a"b’a"b*

16 35. n§ ab” piml | aBBax TH ToH Ho13Ty013Tp00 ¢ SK10
atbtba”

16 36. o} ba” p3im| woax | THTH H,1;T,101R ¢ Figure la
atab'v”

16 37. 0, I pém | @oax | THYTH H,13T,2 ¢ SK5,513
+ -t -
aaaa

16 38.{(3.12.12)| E ac’bt | p3im| o8B DD T D,1;T,101R c Figure 1b
atvtet s

16 39. atc'tt | p6 | os8 pOT H,10T,20 c Figure 1¢

16 40. o, ab” pom | a88 pOT H,13T,2 ¢ K4
ab*y”

16 a1.] (a%) 3 ctafab’ | p1 | @BaB | QQQO 0,10 N.IH 41
afotetat NS

16 42. cbad | pm aBay Q;0,0,% Qy,150,,1 N

16 43. cdab’ [ pg | a8 | QQQQ Q,101R N,IH 43

16 44. fbvatde [ pg | a8 | QQaQQ Q,10R N,Ih 44

exposition often make it hard to compare results, but none of these enumera-
tions is complete. In the relatively accessible book of Subnikov and Kopcik
[9] it is asserted that there are 60 types of convex isogonal tilings. However, as
we shall show, in fact there are 63 types, and representatives of the three
types missed by Subnikov [8] and Subnikov and Kopcik (IG 36, IG 38 and
IG 39 of Table I) are reproduced in Figure 1. In addition, several of the
diagrams in [8] and [9] are incorrect. For example, diagram number 35 in
Figure 176 of [9] should consist of scalene triangles, not isosceles ones. Also,
the description of the construction of convex isogonal tilings in Chapter 7 of
[9] is misleading in that it does not yield all of them as claimed.

In view of these remarks, we feel that no further justification is needed for
presenting here, after the long period since their introduction, a complete and
accurate list of the isogonal and convex isogonal tilings.

2. The net N(9) of a tiling J is defined as the graph consisting of the
nodes (vertices, that is, points belonging to at least three tiles) and arcs
(edges) of I. The first stage in the enumeration of the normal isogonal tilings
is the determination of all possible nets. To do this we use Euler’s theorem,
applicable since the tilings we are considering are normal, from which we
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Vertex Edge Tile

List Adjacency | Space A Reali- Ipaferences

No. | Net 9.'2;&:"“‘ Symbol | group :::ﬁ;’ :m‘:;' spects sations | ere

() (2) (3) (4) (s) | (6) (7) (8) (9) (10)
1645, (4% | e CbaTd [ em |08 |Q,0,0,0, | 0;,150,00 N

cont. a*b*c"'d*
16 46, cont. | a*ytcte* | p2 |oBY8 [qqqq |00 C,IH 46 | SKs9,54
16 47, ctotatat | po | ooy 00,09, | 0;31050,,10 c SK57,51
16 48, a’be™d” | pm {ays | 0;0,050; | Q451505,1305,1:Q,1 | € ske?
16 49, ab'c™d’ | pmg | oBYS | 0,0,0,0; [ 0542:0,.2 c skeg
+ -+ 4+
16 50, c*ba’d’ | pmg | aday | 00,0, | 94 100R50,.2 3 K47
16 51, cb*a"d" | peg |oBay |QQQQ | Q208 C,IH 51 | SKss
16 52, c’d"a’d” | pog [ oBaB | Q)04 | Qy,1DIR;Q,J0IR c K53
16 53. b7a"c*d" | pgg | ooy [QQQQ | Q202 C,IH 53 | sks
-t . .
16 54. abcd’ | o [ agvs | 0,0,050; | 942:0,,1:050 c sk21
16 55. bla'c’d" | po | o8B | 00,005 | 0,,10:0,,20:05,00 | € $K42,55
16 56. b*a’c™d™ | pag | cady | 00,0105 | 0,430, 10IR5052 | € sKI8
16 57. ¢ a'vt p2 |ages |QQQQ | Q00 C,IH 57 | SK60,52
a‘btatht
16 58. ab* png | afe8 [QQQQ | Q.2 N.IH 66
16 59. bma” P99 |oasa [ QQQQ | Q101 N, IH 59
16 60. ab™ . | em | osas | 0,000, [ 00150, N
16 61, bt P4 | acom | 0,0,0,0, | Q45130500 N
O
IG 36 IG 38 IG 39

FIGURE 1
The three convex isogonal tilings
missed by Subnikov [8] and Subnikov and Kopcik [9]
obtain the relation

n—2
=2,
n§3 n Pn
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Vertex . Ed Tile
List Adjacency | Space |, Ed9¢ . Reali-
Net fgroup and Y | Spacety et transi. Aspect ea Ref
No. Synbol | SYmbol | group tiv?ty tiv?:; spects sations eferences
m (2) (3) (4) (s) | (6) (7) (8) (9) (10)
e (4 |c, at pa | oo [gQoq | g0 N,IH 62
cont. PO
aaaa R
16 63. a pig | eooe {QQQQ | Q.2 N,IH 73
16 64. o§ cb a pm | afa3 [QQQQ | Q, N,IH 64
ab*eb” R
16 65. ab”c prm | aBYE | 00,050, | 0y4150,,0 ¢ sk26
16 66. cbta pmg | @B [QQQQ | Q,IDIR C,IH 58 | Skas
16 67. ab*e em | aBv8 |QQQQ | 0.2 C,IH 67 | Ske2
16 68, n{- b™a” em | oosa [QQQQ | Q1 N,IH 62
a*b'bma A
16 69. a'b png | aBBa [QQQQ |2 C,IH 69 | Skag
16 70. a’b” pim | ofBa |0,0,0,0, | 03,1:0,,2:05,1 ¢ SK15
6 7. b*a* Pdg | coca |Q;0,01Q, | Qp.2:0,,101R c ska0
16 72. 0; ab pmm | aBx8 1QQQQ |Q,1 C,IH 72 | ska4
abab
16 73. ba pdg | axaa 1QQ QQ Q,1DIR M,IH 63
16 74. 0§ at cm | cona {QQQQ |Qu cIH 74 | skas
+ - -
aaaa n
16 75. a p4m | acaa QIQZQIQZ Q] .1;02.1 N
16 76. D, a pam [ omaa |QQQQ Q. C,IH 76 | SKI7,56
daaa
16 77. [(3.6.12)[ € abc | pém| a8y |DHQ 0,13H,2;Q,3 c K1
a‘b"c+

where p, is the number of n-gonal tiles meeting at each node of N (). (Here,
as elsewhere, a tile will be described as an n-gon if it has n vertices and n
edges. The word n-gon is not to be understood to imply that the tile is a
polygon.) There exist 17 solutions of this equation in integers p;, ps, . . . and
since the tiles round a vertex may, in general, be arranged in several different
ways, we arrive at a total of 21 possibilities. But many of these can be
eliminated immediately on combinatorial grounds—in other words, the partic-
ular arrangement cannot be continued in a consistent manner over the whole
plane. We do not give full details of the analysis here since it is essentially the
same as that described in [4]. Finally we arrive at eleven different nets one of
which occurs in two enantiomorphic forms. These are familiar as the nets of
the 11 “uniform” or “Archimedean” tilings [4], shown in Figure 2.

Let ¥ be an isogonal tiling, and let ¥ be any vertex of J. Consider any
edge incident with ¥, and to the end of this edge near ¥ associate a “sense of
crossing” by which we mean that we associate with the end a clockwise or
counterclockwise sense of rotation about V. We shall say that we have a
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List vertex | agjacency |Space | Edge | Tile R
Net |group and pace X Aspect eali- References
No. group and gypho) transt{ transi- pects eferenc
Symbol | 7 ST eivity| tivity sations
) (2)] (3 (4) (5) |(6) (7) (8) (9) (10)
16 78. | (4.8%)]¢€ atbc™ | e |asy |000Q 0,1;0,1 c ka3
+ 4+
abc 44+
16 79. atc*h pd lags |00Q 0,10;Q,10 c k41,55
16 80. a’be” pém By | 0,00 0;,1:0,,150,2 c SK14
16 81. ac'd* | pag |as8 |000Q 0,2;0]01R c $K39
16 82. 0 ab” pim a8 | 000Q 0,1:0.1 c sK16
4+ -
ab'b
1683. | (69 [ bac” | em a8 |HHH H,1 N.IH 12
+ .+ +
abec o+
16 84. a*bte p2 |aBy |HHH H,10 C.IH8 | SKs8,56
16 85. a'b+c+ pmg | a8y HHH H,2 C,IH 13 SKa6
16 86. b a’c’ | pgg [oe8 |HHH H,101R CIH9 | sks2
1G 87. abge p3ml | aBy HIHZHZ HI .1;H2.1;H3.1 [ SK9
16 8s. ba'c’ | 6 foos | HHM, | H,.203H,,10 ¢ $K37,510
16 89. ¢y a” p3lm|{oaax | HHH H1 N,IH 18
+ 44
aaa +
16 90. a p6 loox |HHH H,10 NJIH 1T
16 91. 0, ab* em |arg | HHH H,1 C,IH 17 | Skea
b*o”
16 92. 3 ab” pom | aBg | HHH, | Hy 23K c K3
16 93. 0, a Pem |oaa | HHH "R C,IH 20 | SK6,512
aaa N

sensed end and denote it on diagrams by inserting a small arrow whose shaft
crosses the edge near to V. The terminology “directed” or “oriented” is
avoided here because these words are usually reserved for the assignation of a
direction along an edge, rather than across the end of an edge as required
here.

To one of the sensed ends at ¥ let us assign a symbol, say a, and then
apply the operations of S (%) to yield a corresponding assignation of the same
symbol to at least one sensed end at every other vertex of 9. Not only may
two or more sensed ends at a given vertex be assigned the same symbol, but it
may also happen (if the sense of an end is reversed by an operation of S(9))
that the same symbol is assigned a second time to the same end, but with the
opposite sense. In this case we shall consider the symbol as attached to an
unsensed end. If there still remain ends in the tiling to which no symbol is
attached, then we assign a new symbol, say b, to one of the free ends, and
proceed in this way until a symbol has been assigned to every end of every
edge in 9. The vertex symbol is obtained by reading off the symbols attached
to the ends at V, in cyclic order. If we are reading counterclockwise, then a
superscript + or — is used to indicate counterclockwise or clockwise sensing



342 BRANKO GRUNBAUM AND G. C. SHEPARD

\VAVAVAVAVAVAVARS:

\
ONONONINININA,
NANNNNN/
AAAAKXN

NANNNNN
/N/NN/NNAN/N
(3% @)
g<_><>z_\/\/ I I A I

\VAVAVAERRVAVAVAVAVAVAVA
/vvv N\ AAIIIII

NN

INANNANINANT/N,
(34.6) 3343 (324.3.49)
ANEYANYA WY,

(AN X
XXX
(XXX

NARVARVARN
(3.4.6.4) (3.6.3.6) (G.12.12)
E%E 5/‘ % EE %
(4.6.12) (4.8%)
FIGURE 2

The eleven uniform (Archimedean) tilings
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of the ends, and no superscript is used if the end is unsensed. An example of
an isogonal tiling is given in Figure 3, together with the labelling of the ends
at the vertex V. Here the vertex symbol is a*b*c*c~b~a~. We do not, of
course, distinguish between vertex symbols which can be obtained from one
another by cyclic permutations or reversals.

FIGURE 3
Example of an isogonal tiling with sensed ends of edges labelled

We now define the adjacency symbol of § in the following manner.
Consider, in order, the edges incident with ¥ whose ends are labelled q, b,
¢, . ... Suppose that the edge with end labelled a bears a symbol x at its
other end. If end a is unsensed, then necessarily so is x, and then x is the first
component of the adjacency symbol. If a is sensed, however, then either x is
sensed in the same direction as a (by which we mean that their senses are
both clockwise or counterclockwise about their respective vertices) in which
case the first component of the adjacency symbol is x*, or x is sensed in the
opposite direction to a, in which case the first component is x~. For the
second, third, ..., components of the adjacency symbol we define symbols
in the same manner corresponding to b, c, . . ., until all the distinct letters in
the vertex symbol are exhausted. For example, the adjacency symbol of the
tiling of Figure 3isa~c*b™.

The adjacency symbol clearly indicates the relationship between V¥ and its
neighboring vertices. Hence we make the following definition.

DEFINITION. Two isogonal tilings with the same combinatorial type of net
are of the same type if they have the same vertex and adjacency symbols.

Of course, adjacency symbols are not considered distinct if they differ from
each other trivially, that is by change of notation, cyclic permutation, or
reversal of order.

To enumerate the normal isogonal tilings we must therefore take each of
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the 11 possible nets, and then determine all the vertex and adjacency symbols
that can be associated with each. This is a purely combinatorial problem, and,
in fact, it turns out to be very simple. The reason is that the list of symbols is
the same as that determined in [3] for the isohedral tilings. This is suggested
by the fact that the construction of the vertex and adjacency symbols
described above closely parallels that of the tile and adjacency symbols as
described in [3]. This relationship may be make precise in the following way.
For our isogonal tiling I construct a dual tiling by selecting a point in the
interior of each tile, and joining two such points by an arc (straight or not) if
and only if the tiles in which they lie have an edge in common. These arcs
must, of course, be chosen to be disjoint except at their endpoints. In this way
we obtain a “combinatorial” dual tiling J*, each tile of which contains a
vertex of 9. The tiling 9* is combinatorially isohedral in that its isomor-
phism group is transitive on its tiles, a fact which follows from the isogonality
of §. We may assign to each tile of J* a symbol coinciding with the vertex
symbol of the vertex of & which it contains, and moreover we may do this in
a canonical way as indicated in Figure 4. It is now clear that the problem of
finding all vertex and adjacency symbols for & is precisely the same as that of
finding all tile and adjacency symbols for &*, thus justifying the assertion
made above.

FIGURE 4
The correspondence between the vertex symbol of an isogonal tiling
and the tile symbol of the dual tiling

Just as the 93 entries in Table I of [3] correspond to the 93 combinatorial
types of normal isohedral tilings, so the same symbols in Table I of this paper
correspond to the combinatorial types of normal isogonal tilings. This com-
pletes the first stage in the enumeration.

We must now see which of these types can be represented by an isogonal
tiling as originally defined. In other words we must consider the shapes of the
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tiles only, and not think of them as having the ends of their edges marked by
symbols and sensed. To do this we examine each type in turn. For each we
may, if we wish, first distort the corresponding uniform net so as not to affect
the crystallographic group of the tiling, but to make edges in different
transitivity classes of different lengths. Then replace each edge by an arc
according to the following scheme:

(a) If the two ends of an edge bear the same letter and are sensed in the
same direction, then replace the edge by a C-curve, that is, any centrally
symmetric curve whose center of symmetry is the midpoint of the edge.

(b) If the two ends of an edge bear the same letter and are sensed in
opposite directions, then replace the edge by a D-curve, that is, any arc which
possesses the perpendicular bisector of the edge as a line of reflective
symmetry.

(c) If the two ends of an edge bear different letters, then replace it by any
arc (an E-curve).

In all other cases we must leave the edge as a straight line segment. In (a),
(b) and (c) the only restriction on the arcs is that in the final tiling they must
be digjoint except at their endpoints, and that congruent arcs correspond to
equally marked edges.

TABLE 1. The 93 adjacency symbols. Column (1) gives the list number, and
column (2) indicates the net. Here (p.q....) means that a p-gon, a g-
gon, ... meet at each vertex, exponents being used to abbreviate in the usual
manner. Column (3) indicates the possible vertex symbols and also the vertex
group, that is, the restriction of S (%) to the neighborhood of one vertex. The
same notation is used for the groups as in [3]. Column (4) shows all possible
adjacency symbols, column (5) indicates the crystallographic group of the
tiling, and column (6) shows the transitivity classes of edges at each vertex in
the same notation as that of Table I of [3]. The transitivity classes of the tiles
incident with each vertex are shown in column (7) and are denoted in a
similar manner, except that T}, T, ... denote different classes of triangles;
Q1; @y, . .. denote different classes of quadrangles, and so on. H stands for
hexagons, O for octagons, and D for dodecagons.

Column (8) indicates the number of different aspects of the tiles in each of
the transitivity classes. Thus T}, 2D; T,, 1D 1R; Q, 3 means that the triangles
of class T occur in two direct aspects; triangles of class 7, occur in one
direct and one reflected aspects; and quadrangles occur in three aspects, and
each quadrangle coincides with its mirror image. The distinction between
direct and reflected aspects is made whenever a tile does not coincide with its
mirror image.

Column (9) shows the possible realizations, with abbreviations as follows:

C: Convex isogonal tiling exists.
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N: Isogonal tiling exists, but it cannot be convex.

M: A marked isogonal tiling exists, but a normal isogonal tiling does not.

IH: The tiling is isohedral. The number of the corresponding tiling in Table
I of [3] is indicated.

Column (10) gives reference to the literature. SK means Subnikov and
Kopcik [9] and S means Sauer [7]. Where convex isogonal tilings exist which
have been missed by Subnikov and Kopcik, a reference is made to Figure 1 of
this paper, where each such tiling is shown.

Carrying out this process we find that in 91 cases isogonal tilings can be
constructed. The two cases that fail are IG 18 and IG 73. In the case of IG 18
the specification implies that it coincides with the regular tiling by triangles,
and so must be of type IG 20; similarly the specification of IG 73 implies that
it coincides with type IG 76. The result of this process is to establish the first
statement of Theorem 1. Going through the list of Table I again we see that
of these 91 types, exactly 34 are transitive on the tiles, and so are also
isohedral tilings. Finally we examine each type to see if it is realizable by
convex tiles. It turns out that this is possible in 63 cases, and so the theorem is
proved.

In Figure 5 we reproduce diagrams of all 91 types of normal isogonal
tilings. For convex realizations, the reader is referred to Figures 174 to 178 in
the book by Subnikov and Kopcik [9] and to the three diagrams of Figure 1.
The two combinatorial types (IG 18 and IG 73) which are not realizable by
tilings can be exemplified by “marked” tilings in a similar manner to that
described in [3]. Diagrams of these two types appear in Figure 6.

3. In this section we briefly consider bounded isogonal tilings & which
contain digons. To begin with we determine possible nets, as at the beginning
of the preceding section. First we notice that if we put n = 2 in the equation
derived from Euler’s theorem, then the coefficient of the term in p, is zero,
thus indicating that infinitely many nets are possible. In fact, we can go
further, and construct bounded isogonal tilings with arbitrarily many digons
at each vertex by using the following procedure.

Consider an arc a of a normal isogonal tiling, and let its endpoints be
denoted by P, Q. Replace a by a set D of digons, all of whose vertices lie at P
and Q, and also replace the images of a under the operations of S (&) by the
images of D. Then if the set D has the same symmetries as a, the new tiling
will be isogonal. For example, if a is a C-curve, then we may replace it by a
set D of digons which is centrally symmetric in the midpoint of a. It should
be noted that this operation can be carried out on any combinatorial type of
isogonal tiling, whether such a type can be realized by an actual normal tiling
or by a marked tiling.
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In Figure 7 we show examples of tilings produced by this operation from
normal tilings.

A ED

IG 18 IG 24

FIGURE 7
Two examples of isogonal tilings containing digons

Our main result here is the following.

THEOREM 2. FEvery bounded isogonal tiling is either normal or can be
constructed from one of the 93 combinatorial types of normal isogonal tilings by
applying the operation described above to one or more transitivity classes of arcs
(edges).
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The proof of this is immediate from the observation that the operation
described above has an inverse. In other words, if we start from any bounded
isogonal tiling, then we may replace any set of digons which share the same
two points P, Q as vertices by a suitable arc with endpoints P, Q. Moreover,
if this is done to the whole transitivity class of digons, then the tiling remains
isogonal. Hence all the digons in a given tiling can be eliminated and the
resulting isogonal tiling is normal.
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