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1. A tiling is a collection 3~ = {Tt\i = 1,2,...} of closed topological discs which
covers the Euclidean plane E2, and of which the individual tiles Tt have disjoint
interiors. We shall assume throughout that the intersection of any two tiles is a con-
nected set. If each tile is congruent (directly or reflectively isometric) to a given set T,
then the tiling & is called monohedral and T is called the prototile of &~. Clearly every
monohedral tiling is locally finite.

The tiling^" is isohedral if the symmetry group S(^) (that is, the group of isometries
which leave y invariant) is transitive on the tiles. An isohedral tiling is necessarily
monohedral.

The purpose of this paper is to enumerate and describe all possible types of mono-
hedral tilings of the plane which are isohedral. It is surprising that no previous account
of the enumeration appears in the literature. In fact several authors ((15), (2), (7)) have
attempted to do this but failed for various reasons. On the other hand, the hardest part
of the proof dealing with 'marked tilings', was essentially carried out as long ago as
1938 by Sinogowitz (15). The details of his enumeration have not been published and his
method appears not to have had any influence on later research. Here we shall present
a new derivation which is based on an extension of Delone's 'adjacency symbols' (2),
and then show how the 81 types of isohedral tilings can be derived from the ' marked
tilings'.

In the next section we shall introduce some additional terminology and notation,
and, in particular, will elucidate what we mean by a ' type' of tiling. Previous attempts
at enumeration failed to clarify this point. Intuitively, two tilings will be said to be of
the same type if each tile of one bears the same relation to each of its neighbours as
each tile of the other. The third section will be devoted to the statement and proof of
the main theorem. We shall present the characteristics of the different tilings in
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Table 1, and we shall show representatives of each type in Fig. 4. In the last section we
discuss some related results and problems.

2. Denote by 8(3~; T^ the subgroup of the symmetry group S{17~) that leaves a
particular tile Tt invariant. Since, by transitivity, the groups 3(&~; Tf) are isomorphic
for all i, we may refer to the corresponding abstract group as the induced group oi!T
and denote it by I{^~). Clearly >S(^; Tt) is a subgroup of #(7^), the symmetry group of
the tile Tt. The number of possible groups S(!7~) and 1{&~) is very limited: S{^) is one of
the 17 two-dimensional crystallographic groups (see, for example, (9), (l), (4) or (7)) and
I(.T) is one of the following ten groups: E (the trivial group), Cn (the cyclic group of
order n) for n = 2, 3, 4 or 6, and Dm (the dihedral group of order 2m) for m= 1, 2, 3, 4
or 6. This restriction on I{&~) arises because these groups are the only ones that occur
as subgroups that leave a point fixed of the 17 crystallographic groups.

Also associated with ST is its 1-skeleton or net N(^~). This is the graph consisting of
nodes or vertices (where 3 or more tiles meet) and edges (where two tiles intersect). The
part of the boundary of a tile that lies between two adjacent vertices will be called a
side of the tile, so that each edge of the tiling coincides with sides of two tiles. If each
tile in a monohedral tiling has r sides and r vertices, then we shall call it an r-grore-this
word not implying convexity of the tile or even that its sides are line segments.
Although many of the published accounts are fallacious, it is an easy consequence of
Euler's theorem ((14), (12), (2)) that 3 < r ^ 6. Moreover, since ?7~ is isohedral, only
eleven topological types of distinct nets are possible. These are theLaves nets (sometimes
called regular or Subnikov nets) (12), illustrated in Fig. 1 along with symbols denoting
the valences of the vertices. We remark in passing that the Laves nets are familiar as
the duals of the nets of the eleven types of uniform tilings ((3), (6), (16)).

Clearly we must consider two plane tilings as of different types if they differ in
S(&~), I{^) or N($~), but we shall see that this classification is not sufficiently fine. For
example, tilings IH 43 and IH 44 in Fig. 4 cannot be distinguished by these three
parameters, yet, for the intuitive reasons stated above, they should be considered as
different types. To explain the finer classification we need to introduce the concept of
an 'adjacency symbol'. This is implicit in the work of Sinogowitz(l5) but first used
explicitly by Delone(2)-though only in the case I{3~) = E. We show here how the
method extends in a simple and elegant manner to the general case.

Let Tt be any given tile in ST and let us assign a symbol, say a, to any directed
(oriented) side of Tt. Since ST is isohedral, applying the operations of 8(&~) will then
yield a corresponding assignation of the same symbol to at least one side of every other
tile in ST. Not only may two or more directed sides of a tile be assigned the same
symbol, but it may also happen (if the side under consideration is reversed by an
operation of I{&~)) that the same symbol is assigned a second time to the same side of
Tiy but with a reversed direction. In this case we consider the symbol a to be a label for
an undirected side of Tt.

If there are further sides of tiles to which no symbol is attached, then we proceed to
assign a new symbol, say b, to one of the free sides. We proceed in the same way until
a symbol has been assigned to every side of every tile. Of course, since each tile is an
r-gon with r ^ 6, it is never necessary to use more than 6 distinct symbols.
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Consider, for example, Fig. 2. Here we have allocated symbols in the manner

described above to the sides of the tiles of two tilings. In the first case all the sides are
directed, the symbols are distinct, and I{$~) = E. In the second case, I{3~) = D1 and
we have two symbols a, d corresponding to undirected sides and two symbols b, c
corresponding to directed sides. The tile symbol is obtained by reading off the symbols
in cyclic order round the tile. A superscript + or - denotes whether the side is coherently
or oppositely oriented, and no superscript implies that the corresponding side is not
directed. Thus in Fig. 2 the tile symbols are a+b+c+d+e+f+ and ab+c+dc~b~ respectively.
In general we shall direct our sides and define the tile symbol in such a way that as
many superscripts + as possible occur at the beginning of the symbol. Also we shall not
consider two tile symbols as distinct if one can be obtained from the other by permuta-
tion or reversal.

After assigning to each side of each tile a symbol in the manner described above,
we can define the adjacency symbol. To do this we consider, in sequence, the sides
a,b,c,... of Tt in cyclic order. Since each edge is common to two tiles, it follows that the
side a of Tf is also a side, say x, of some adjacent tile. If a is undirected, then necessarily
so is x, and then x is the first component of the adjacency symbol. On the other hand,
if a is directed, then there are two possibilities: either x may be directed in the opposite
direction from that of a, and in that case the first component is x+; or x may be directed
in the same direction as a, and in this case the first component is x~. For the second,
third, ... components of the adjacency symbol we assign letters in the same way using
b,c,... until all distinct letters in the tile symbol have been exhausted. The final
sequence of letters so constructed is called the adjacency symbol of the tiling.

For example, the adjacency symbols of the tilings of Fig. 2, with the letters allocated
as shown, are a+e+d~c~b+f+ and dc~b~a respectively.

Definition. Two isohedral tilings are said to be of the same type if they have the same
adjacency symbols.

We do not distinguish, of course, two adjacency symbols that differ trivially-by
cyclic permutation or by change of notation. It will be seen that this adjacency symbol
is a mathematical formulation of the intuitive concept of' type of tiling' mentioned in
Section 1.

3. We can now state our main result.

THEOREM. There exist eighty-one types of isohedral tilings of the plane.
The proof is in two stages. The first is to enumerate all possible tile symbols and their

corresponding adjacency symbols, and the second is to see which of these correspond
to actual tilings.

At first sight, the first of these two steps appears formidable. For example, in the
case of 6-gons with tile symbol a+b+c+d+e+f+, there appear to be 6! 36 = 524 880 possible
adjacency symbols, produced by taking all permutations of a, b, . . . , /and then adding
to each letter a superscript +, ~, or neither. But the vast majority of these can be
eliminated immediately.

To begin with, we need only consider those permutations which consist of a number
of disjoint transpositions; if edge u abuts on edge v, then edge v must abut on edge u,
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and so the permutation contains the transposition vu of uv. If we also eliminate the
variants produced by cyclic changes and by reversals of order, we are finally left with
j ust 15 permutations to be considered. And even then, many possible ways of allocating
superscripts are clearly inadmissible. For example, if the transposition vu of the
symbols uv occurs, then the only possible superscripts are v+u+ and v~u~. Similar
restrictions apply to letters without superscripts.

Next, we must see if each adjacency symbol is combinatorially possible. For this we
take the Laves net and assign letters according to the adjacency symbol we have
chosen. It may prove to be a consistent labelling scheme-in which case we have a
possible tiling-or some inconsistency may arise, in which case it is rejected. In fact,
to make sure that the tiling is possible it is only necessary to show that letters may be
assigned consistently to all the tiles incident (at edge or vertex) with one given tile.

Eventually our 524 880 symbols for the hexagonal net will be reduced to 7, and these
appear in the first seven rows of Table 1. We proceed similarly with all other Laves nets
and with all other possible groups I{3~) to arrive finally at the 93 adjacency symbols
listed in Table 1.

A convenient way to present the 93 tilings corresponding to the 93 adjacency
symbols is by means of marked tiles. Examples are given in Fig. 3 of marked tilings
corresponding to numbers IH 5, IH 12, IH 10 and IH 11 in our list (Table 1) and further
examples are given in Fig. 5. In effect all we have to do is to assign a mark to any one
tile (the mark may be chosen arbitrarily so long as its symmetry group is 2?-we
have used an |_) and then apply the operations of S(^) to mark all the other tiles. If
I(&~) + E then each tile may carry more than one mark. Thus in Fig. 3 (b), we have two
(_'s superimposed to form ~|~, and more complicated cases arise in Figs. 3 (c), (d) and 5.

It will be appreciated that the existence of these 93 marked tilings does not imply the
existence of the same number of' unmarked' tilings, that is tilings as originally defined.
It is strange that this point has been overlooked by all authors previously attempting to
enumerate the isohedral types of tilings.

So our next and final task is to find whether, for each of the marked tilings, the tile
shape can be chosen in such a way that the corresponding tiling is of the type under
consideration. If we proceed through the list we find that in fact 12 tilings cannot be so
represented. For example consider tiling number IH 19. Here the symmetry group of
the tile is D3, and the symmetries of the tiling that leave any vertex invariant form
also the group D3. Now it is clear that these Wo conditions cannot be met unless the
tile is a regular hexagon-and then it is not of type IH 19 but is of type IH 20. Hence
tiling number IH 19 can only be realized by marked tiles. In Table 1 the 12 tilings of
this kind are marked by an M in column (9).

The general technique for finding a tile shape corresponding to a given type can be
briefly described as follows. First we see whether we can distort the net so that the
group is unaltered but, so far as possible, different transitivity classes of edges are of
different lengths. We then replace each edge by an arc according to the following rules:

(a) If an oriented edge x+ is against an edge also marked x but in the opposite
direction, then we replace it by any centrally symmetric arc, the centre of symmetry
being the midpoint of the edge.
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(b) If an unoriented edge x is against an unoriented edge with a different symbol,
then we replace it by any arc which possesses the perpendicular bisector of the edge as
a line of reflective symmetry.

(c) If an oriented edge x+ is against an edge bearing a different symbol then we
replace it by any asymmetric arc.

In the other cases we must leave the edge as a straight-line segment. The only
restriction on the choice of arcs in cases (a), (b) and (c) is that they shall be disjoint,
except possibly at their endpoints.

In this way we finally arrive at our list of 81 tilings. Representatives of each type are
given in Fig. 4, completing the proof of the theorem. In each case, the tiles have been
chosen to be of as general a shape as possible and an a+ side is marked by / or an
a side is marked by /.

4. There have been many attempts to enumerate and classify plane tilings, starting
with the classic work of Kepler in 1619 (10). In addition to the works (2), (7), (15)
quoted above, we must mention the papers of Fedorov (3), Haag (6), Wollny (17) and the
books of MacMahon(l3), Hilbert-Cohn-Vossen(9) and Heesch-Kienzle(8). These
authors, however, imposed various and differing conditions and so obtained results
which are not directly comparable with the enumeration given in this paper. In fact,
the correct interpretation of some of these works seems rather obscure. It is strange
that the more obvious restrictions seem to have been overlooked, or have led to incom-
plete enumerations. For example, it is still not known how many types of monohedral
tilings by convex polygons exist ((ll), (5)). The case of isohedral tilings by convex polygons
will be discussed in a forthcoming paper by the authors.

The methods of this paper also lead to a classification of all plane patterns. By a
pattern we mean any connected motif together with all its images under the operations
of one of the 17 crystallographic groups, so long as all these images are disjoint. To do
so we consider the Dirichlet region of each motif and so obtain a tile-transitive marked
tiling of the plane, the motifs providing the necessary marks. Hence there can be at
most 93 types of patterns. It remains to be shown that each of these can actually
arise. For 81 types, those which correspond to 'unmarked' (shaped) tilings, the
existence is established trivially by observing that in each case we need only take the
interior of the tile itself as the motif. For the remaining 12 types, those marked by M in
column (9) of Table 1, we may choose motifs as in Fig. 5, where the Dirichlet regions are
also indicated.

It seems to be an unsolved problem whether every type of isohedral tiling with
convex prototile can be realized as the set of Dirichlet regions of a point set in the plane.

We remark that the corresponding enumeration problem for tile-transitive tilings
in three dimensions is essentially different, since it is trivial to show that there exist
infinitely many types.

Research supported by National Science Foundation Grant MPS74-07547 AOl,
and by National Research Council of Canada Grant A 7071.
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188 BBANKO GRUNBAUM AND G. C. SHEPHARD

Tile symbol: o+6+c+d+e+/+
Adjacency symbol: a+e+d~c~b+f+

(a)

Tile symbol: ab+c+dc~b~
Adjacency symbol: dc~b~a

Fig. 2

(a) IH 5 (&) IH 12

(c) IH 10 (d) IH 11

Fig. 3. Examples of marked isohedral tilings.
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I H l I H 2 I H 3

I H 4 I H 5

I H 7 I H 8 I H 9

IH10 IH 11 IH 12

Fig. 4. Examples of the 81 types of isohedral tilings. In each tiling
either an a+ edge is marked f, or an a edge is marked /.
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Fig. 4 (cont.)
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Fig. 4 (cont.)
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Fig. 5. Examples of the twelve types of marked isohedral
tilings that have no unmarked representatives.
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