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PATCH-DETERMINED TILINGS PATCH-DETERMINED TILINGS 

Joe said, "there must be two people, at least, with exactly the same 
number of hairs on their heads." How could Joe be so sure? 

B. If an equilateral triangle of side 1 is decomposed into 3 subsets, show 
that at least one subset must have a diameter greater than or equal to 
1 /V3. (The diameter of a plane set is the maximum distance between any 
two of its points.) 
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Patch-determined tilings 
B. GRtONBAUM AND G. C. SHEPHARD 

A tiling of the plane is a family of sets, called tiles, that cover the plane 
without gaps or overlaps. Usually we are concerned with tilings whose tiles 
are of a small number of different shapes; familiar examples are the regular 
and uniform tilings (see, for example, [1]). 

Although the mathematical theory of tiling is very old, it still contains a 
rich supply of interesting and challenging problems. The purpose of this 
article is to describe some of these. In many cases the mathematical aspect 
is enhanced by the aesthetic appeal of the resulting tilings. 

Let S be any set in the plane, and T a given tiling. Then we denote by 
T(S) the set of tiles which have non-empty intersection with S. The set 
T(S) will be called a patch of tiles, the name being suggested by the fact that 
the patches with which we shall be concerned here consist of just a few 
contiguous tiles. Now if we are given T(S) it will clearly be possible in at 
least one way (namely Titself) to 'adjoin' tiles, of the same shapes as those 
used in T, to T(S) in such a way as to complete a tiling of the whole plane. 
But, in general, there will be many ways of doing this. If the tiling may be 
completed in a unique way, then we shall say that it is completely determined 
by the patch T(S). The problem with which we shall be concerned is to find 
examples of very small patches which completely determine a tiling. 

At first it may seem surprising that such patches can exist, apart from 
trivial cases such as the following. If there is a unique way in which the 
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plane can be tiled with a given shape (for example there is a unique tiling 
by regular hexagons of a given size) then a patch consisting of just one tile 
will completely determine the tiling. Other examples of tiles with the same 
uniqueness property appear in Fig. 1. On the other hand, in the case of 

140 
160? 160?\ 

/40? 40 

FIGURE 1. 

squares, there is an uncountable infinity of distinct tilings which can be 
produced by displacement of rows (or columns) as in Fig. 2. In this case, 
the tiling cannot be completely determined by any finite patch of tiles. 

i I I 

1 1 111 

FIGURE 2. 

Now consider the tilings of Fig. 3. Here we use only one shape of tile, but 
it is necessary to 'turn the tile over', that is, to use reflective congruence. 
The tile has ten equal sides and two which are four times as long; it is easily 
constructed as the union of twenty equilateral triangles. One of the tilings is 
a mirror-image of the other, and either is completely determined by a patch 
consisting of any two contiguous tiles. A similar situation occurs with the 
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FIGURE 3. 

tilings of Fig. 4. Again only two tilings exist, but here they are quite distinct 
and each coincides with its mirror-image. It is simple to show that no other 
tilings are possible with this shape, and again, each is determined by a patch 

(a) 

(b) 

FIGURE 4. 
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FIGURE 5. 

(a) 

(b 
FIGURE 6. 
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consisting of two contiguous tiles. In Fig. 5 we show how this tile is con- 
structed. It is based on a parallelogram of which one pair of edges is three 
times as long as the other. To this we add, or cut away, triangles, as shown. 
The exact shape of the triangle is not important-we may replace it by a 
curve or polygonal arc if we wish-so long as it does not possess any 
symmetries. The triangles force one or other of the two patterns and prevent 

FIGURE 7. 

FIGURE 8. 

any other arrangement of the parallelograms, such as laying them out in 
parallel rows. 

The tilings of Fig. 6 are, in a way, more interesting. The tile is based on a 
set of seven equilateral triangles, and two edges of the resulting pentagon 
are replaced by Z-shaped arcs as shown in Fig. 7. Here we use only one shape 
of tile and reflections are not allowed. It can be shown that only two distinct 
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tilings are possible, those of Fig. 6, and that the tiling is completely deter- 
mined by a patch consisting of two contiguous tiles. A curious feature of this 
tiling is that as one builds it up, tile by tile, starting from the original patch, 
it often happens that there appears to be a choice how the next tiles are to be 
laid. Thus in Fig. 8, let us assume that the shaded tiles are already in place. 
Then we can insert two further tiles into the 'gap' as shown. On the other 
hand, this same gap can also be filled with a single tile. This choice is, in 
fact, spurious. If one lays the tiles the wrong way, then several steps later 
it will be found impossible to complete the tiling. So there is no real choice 
open to us, and that is why the tiling is completely determined. 

/ \ 

(a) (FIGURE 9 . 

FIGURE 9. 

Now consider tilings in which two shapes of tile are used. In Fig. 9 we 
show two tilings using (i) regular pentagons, and (ii) hexagons with angles 
108?, 108?, 1440, 108?, 108?, 144?. All the edges are of the same length. If we 
use hexagons alone, then we can arrange them as in Fig. 9a. It will be noticed 
that the zigzag line (thickened in the figure) separates rows of hexagons tilted 
one way from rows tilted the other way. These rows of hexagons can be 
varied in width and number, leading to an uncountable infinity of different 
tilings. On the other hand, if one of the pentagonal tiles is used, then there 
are only two possible tilings, namely Fig. 9b and its mirror-image. No 
tilings exist with more than one pentagon. Hence a patch consisting of the 
pentagon and one of the contiguous hexagons completely determines the 
tiling. This example is of interest partly because of the simple shapes of tiles 
and partly because a single tile (the pentagon) nearly determines the tiling 
completely-it determines it within a reflection. 

Our final example also uses two shapes of tile. These are based on a 
regular pentagon and a rhomb with angles 18?, 162?, 18?, 162?. In each case 
the edges are replaced by a 'saw-tooth' leading to the shapes of tiles shown 
in Fig. 10. As in the previous example, there is an uncountable infinity of 
tilings using the 'rhombs' alone, but only two if a 'pentagonal' tile is used, 
and none with two or more 'pentagons'. Hence, as before, a patch consisting 
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of the 'pentagon' and an adjacent tile completely determines the tiling. 
The reason why we introduce this example is because of its striking appear- 
ance as a five-armed spiral. It is similar in construction, in some respects, to 
Goldberg's "vortex tesselations" [2]. We remark that if we remove the 
saw-tooth and use pentagons and rhombs with straight-line edges, then a 
much larger patch is required to determine a tiling completely. 

FIGURE 10. 

There are many open questions concerning the problems we have con- 
sidered here. Examples have been given of a shape of tile which admits 
precisely two different tilings. Do examples exist for which precisely n 
tilings are possible, where n = 3t, 4,5,... ? What restrictions are there on the 
values of n both in the case where the tiles are of one shape, and in the cases 
where 2, 3, ..., different shapes are used? Can examples be found with the 
properties mentioned in this note if we restrict attention to tiles which are 
convex polygons ? The extent of our mathematical ignorance in this area is 
shown by the fact that the number of different types of tiling by a single 

t Since this was written, an example has been found which will tile the plane in 
exactly three different ways. 
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shape of convex pentagon is still not known. Certainly the list given in [3] 
is not complete; see [4]. 

The only previous treatments in the literature of the problem of extending 
patches of tiles appear to be in early papers of Levy [5] and Sommerville [6]. 
They, however, were concerned with rather different problems using only 
regular polygons. 
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Classifying triangles and quadrilaterals 
S. A. ROBERTSON 

Among the definitions at the beginning of Book I in Euclid's Elements [1] 
there are several that pick out special kinds of triangles and quadrilaterals. 
In his commentary [2] on Book I, Proclus observes that Euclid classifies 
triangles in two ways: firstly 'by sides' into equilateral, isosceles and scalene 
triangles; and secondly 'by angles' into right-angled, obtuse-angled and 
acute-angled triangles. With regard to quadrilaterals, Proclus ([2], p. 134) 
attributes to Posidonius the classification scheme on p. 39, which is to 
be found in Heath's edition of the Elements ([1], p. 189). Thus the ancient 
classification of triangles and quadrilaterals produces three (or six) species 
of triangles and seven species of quadrilaterals. 

My plan here is to consider the problem of classifying triangles and quadri- 
laterals afresh, using simple ideas of topology and symmetry. The results 
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