
ON A THEOREM OF L. A. SANTALO

B. GRUNBAUM

1. Introduction. L. A. Santalό [ 2 ] proved, as a by-product of other investi-

gations, the following theorem:

Let a set of parallel line segments be given in the plane. If every three of

the segments can be intersected (that is9 met) by a straight linef then there

exists a straight line intersecting all the segments.

This result was rediscovered by M. Dresner and T. E. Harris (cf. [ 1 ] ) . An

interesting generalisation was obtained by H. Rademacher and I. J. Schoenberg

[1] , Their generalisation —extending a special case due to T. E. Harris — is

obtained from Santalo's theorem on replacing in it 6ithree" by "m + 2" and

"straight line" by "polynomial line y = CIQX171 + + 0Cm".

The proof of Rademacher and Schoenberg (as well as a proof of Santalo's

original theorem by J. Rey Pastor, cf. [ 2 ] ) is based on Helly's theorem on con-

vex sets.

The principal aim of the present paper is to give a generalisation of Santalo's

theorem in a different direction. We shall restrict ourselves to intersections by

straight lines, but, on the other hand, shall allow much greater freedom in the

choice of sets to be intersected. As far as we are aware, our theorems cannot

be deduced from Helly's theorem on convex sets.

We shall use the following customary definition:

Two sets S and S in the plane are said to be separated by a straight line

L if S C H u L and S* C H* u L, where H and H*9 H φ tf* are the two open half-

planes determined by L. The separation is strict, if S C H and S* C H*.

For the sake of brevity we shall use also the following:

DEFINITION. A family of point sets in the plane is said to have property

cSί if, either ( i ) there are three sets belonging to the family which cannot be

intersected simultaneously by a straight line, or ( i i ) there exists a straight
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line intersecting all the sets of the family.

Thus, Santalδ's theorem is equivalent to the statement that a family of

parallel line segments has property cSί

Our main result is the following:

THEOREM 1. A finite sequence {S { } U' = l, » ,τι) of connected sets in

the plane, such that for every i = 1, 2, , n - 1, there exists a straight line

strictly separating the sets U.< ̂ S. and U ^ . S., has property <Sl

If the sets S, are compact, this theorem remains valid even for infinite

sequences {Sj } ( i = l , 2, •••); indeed, we have the somewhat more general

theorem:

THEOREM 2. Let A be an ordered set and \Sa \ (α G A ) a family of compact,

connected sets in the plane. If for any finite subset {θCi, , Cίm; βι, , βm \

of A, with m a x t < . < m (X; < min1 < : . < n βj (strict inequality) there exists a

straight line strictly separating U?Lι S α f and U ^ Sβ. , then the family {Sa \ has

property &.

If the separating straight lines are parallel, we have stronger results:

THEOREM 3. Every finite family of connected sets in the plane, any two of

which can be separated (not necessarily strictly) by a straight line of fixed

direction, has property <Λ

THEOREM 4. Every family of compact, connected sets in the plane, any

two of which can be separated (not necessarily strictly) by a straight line of

fixed direction, has property <Λ.

In the proofs we shall assume that every three sets may be intersected by a

straight line and show the existence of a straight line intersecting all of them.

2. Proof of Theorem 1. 2.1. If P and Q are any two points, we denote by

[P Q] the closed, by (P Q) the open line segment determined by P and Q.

We need the following

LEMMA. Let Do and Dγ be two directed straight lines in the plane. For

i = 0,1, let X^ , X^ , , / P " be a sequence of n, not necessarily different,

points on D t , ordered according to the direction of D( and such that (<X.

Z i l ) ) n (X^ X^) =φ for j £ k. (φ denotes the void set.) Then there exists



ON A THEOREM OF L. A. SANTALO 353

a family D(t)9 0 < t < 1, of straight lines, depending continuously on t$ such

that

J χ ^ ] ^ φ ( 0 < t < 1; / = 1, 2 , . . . , n ) .

Proof of the Lemma. The Lemma is obvious if either Do and D 1 are parallel,

or

Do n [x[ι); χM-\ = D, n [*<»>; X^] = φ.

In the remaining case we may assume Do n [X^ι'; X^ι']£φ. Let Zλ+ and

DT denote the two open half-lines determined by the intersection point P =

Do n Dx on Di9 with D". preceding D* according to the direction given on Di%

The points X. and X\1' are said to be wrongly paired if either A: 0 ' E D"Q and

XJ^eD*, oτXJ°> e DJ and Z/1 > € D; . 7

If there are no wrongly paired points the Lemma is obvious, since DQ may

be rotated about P till it coincides with Dx .

If there are wrongly paired points, it is easily seen that

( i ) they are consecutive, that is, they are X.'9X.1' for 1 < k < / <. A; + r <_ n;

and

(ϋ) e i t h e r 4 ° > . * & . . . . - * ( « > o r * ω - * ω = . . . = * ω .

Without loss of generality we may assume X^0' = = A^+r ^ ^ o ' ^ e P a s s

from Do to D t by rotating D o first about λ^ ' until it contains the segment

[A^°'r; Xfc\r] and then about %l\r until it coincides with Dx. This completes

the proof of the Lemma.

2.2. Now we shall prove Theorem 1 under the restrictive assumption that

the sets S t are compact and convex.

We shall proceed by induction on the number of sets, n. Since the case

7i = 3 is trivial, we may assume that the theorem holds for sequences consisting

of not more than n, n >_ 3, sets, and prove its validity for sequences consisting

of n + 1 sets.

By the induction hypothesis there exist straight lines intersecting all the

sets 5j , i = 1, 2, . , n. Let K be the set of all the points in the plane through

which there passes at least one straight line intersecting all the sets Sj,

i = 1,2, , n. Since the St are compact, K is closed. We shall prove that
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Since the sets S, are convex, it is clear from the assumption that to every

straight line intersecting them a direction may be given so that the intersection

of the straight line with Sj precedes that with S& for / < k. From the convexity

of the sets S; it follows then by the Lemma that, given two straight lines both

intersecting all S^ i = 1, 29 ,>ι, it is possible to move one of them contin-

uously until it coincides with the other, in such a way that in all intermediate

positions, it intersects all the S^, i = 1, 2, , n.

Let Li ( i - 1, 2, . , n) be straight lines strictly separating the sets U . < . Sj

and U ^ . S.. For linguistic convenience we shall assume Ln vertical and the

half-plane Hn9 determined by Ln and containing Uj<nSj9 situated on the left

side of L π . We put / = Kn Ln. Now / φ. Ln (since we may assume Lx not vertical

and then L t n Ln jέ Π. Since / is closed, there are in view of the Lemma four

possible, mutually exclusive cases:

(a) / - ψ ;

(b) / is a closed segment (possibly reducing to a single point);

( c ) / is a closed half-line;

(d) / consists of two closed, disjoint half-lines.

Case ( a ) . This case may be easily reduced to one of the remaining cases.

In fact, we remark:

( i ) since K Φ Φ$ it contains at least one straight line, which is parallel to

Ln (since / = <£);

( i i ) any straight line L£9 obtained from Ln by a sufficiently small rotation

about one of its points, separates strictly the sets S n + i and iy< π Sy. But then

Kn LήΦ φ9 that is, we have one of the cases (b) , ( c ) , (d) . (Actually, K con-

sists in case ( a ) of a single straight line, but we do not use this in our proof.)

Case ( b ) . Let E denote the lower end-point of / and let T denote a straight

line, which passes through E and intersects all Si9 i = 1, 2, « ,n. There exists

only one such line T and, moreover, there exist two sets, Sp and Sqt p < q9

such that T separates them, Sp being contained in the lower closed half-plane

determined by Γ.

Indeed, if there were two different straight lines 7\ and Γ 2 , through £ , both

intersecting all Si$ i = l , 2 , . . . , n , with T2 π Hn below 7\ n Hnf the straight

line Γ3 passing through any point of 7\ n St and any point of T2 n Sn would

also intersect all Si§ i = 1, 2 , . . ,/ι, but its intersection with Ln would be below

E9 in contradiction to the definition of E.
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Similarly, at least one Ŝ  must be contained in the upper closed half-plane

determined by 7, since otherwise a suitable translate of 7 would still intersect

all the Si, i = 1, 2, . . , n9 while intersecting Ln below E — again a contradiction.

Now let q be the greatest index such that Sq has no points below 7. If all

Si$ i < q9 had points above T9 it would be possible to rotate 7 about any point

of 7 n Sq in such a way that, while intersecting all Si$ ί = 1, 29 . , n9 it would

intersect Ln below £—again a contradiction. This proves our statements about

7.

Similarly we see that through E\ the upper end-point of /, there passes a

unique straight line Ύ\ intersecting all St , i = 19 2, 9 n9 and separating at

least two of them, say Sp* and S^/, p' < q'9 with Sp* contained in the upper

closed half-plane determined by T\ Moreover, the slope of 7 ' is not smaller

than that of T9 since 7 is a separating common tangent to Sp and Sq9 while

7 ' intersects them. (We note that Sp and Sq may coincide with Sp / and S^*.)

Hn being the half-plane to the right of Ln9 its subset M consisting of all the

points not above 7 ' and not below T is well defined. From the definition of

/ and the lemma of 2.1 it follows immediately that K n Hn DM. (Actually

An H =M9 as may be seen from the sequel, but we do not use this.) The com-

plement of M in Hn consists of two open, disjoint sets, one of them being below,

the other above M.

Now Sn+ι C H* and it cannot lie entirely below (resp. above) M since in

the first (resp. second) case no straight line would intersect Sp9 Sq (resp.

Sp'$Sq') a n ( l ^n+ι» contradicting the assumption about the existence of a

straight line intersecting any three of the sets. But Sn + ι is connected, therefore

Sn+ι n M £ φ9 and since M C K9 this completes the proof in case (b) .

Case ( c ) . Assuming the half-line / directed upwards, let E denote its end-

point. As in Case (b), we may prove the existence of a unique straight line T

passing through E9 intersecting all S f̂ i = 1, 2, , n9 and separating at least

two of them, Sp and Sq, p < qt Sp having no points above 7. Let M be the set of

all points to the right of Ln and above or on 7, As in Case (b) , M C K. But

^ n Sn+i £ φ9 since otherwise it would be impossible to intersect Sp, Sq and

S n + 1 , in contradiction to the assumptions. Therefore we have KnSn + ι£φ9

completing the proof in Case ( c ) .

Case (d) / consists of two closed, disjoint half-lines on Ln. Denote by

Eι and E2, with Eγ below E2f the end-points of these half-lines. As in Case

(b) we may establish the existence of unique straight lines Tj9 j = 1,2, passing
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through Ej and intersecting all Sj, ί = 1, 2, , n9 and separating at least one

pair of sets, say Sp. and Sq.9 such that T: n Sq. is nearer to Ej than Tj n S ,

It is easy to see that 7^ has a greater slope than T\.

Let N be the subset of Hn consisting of all the points which are either in

the lower closed half-plane determined by 7\, or in the upper one determined

by Γ 2 . As in case ( b ) we see that Kn H*J N.

Now, SΛ + 1 and U;< n Sn are strictly separated by Ln. Also, if min (p29q{) >_

max (pί9q2) (resp. min (pl$q2) > max ( p 2 » # 1 ) ) there exists a straight line

— for example, Lpχ (resp. Lp2 ) — strictly separating Spι (resp. Sp2 ) and

Sqι vSn+ι (resp. Sg2 u S n + 1 ) . Now if Sn + 1 is above 7\ (resp. below T2 ),

there cannot exist a straight line intersecting Spi, Sgί (resp. Sp2, Sq2 ) and

SΛ + 1 . Hence, by the assumption about the intersectability of any three sets ,

S n + ι must have points in common with /V, and thus also with K. This completes

the proof of Theorem 1 for compact and convex S;.

2.3. The assumption of compactness of the sets St may be dropped by a

well-known method, used also in [ 1 ] in the proof of Helly's theorem.

Suppose it possible to intersect every three of the convex sets S t by a suit-

able straight line. To every triple of sets S; take one such line and on it one

point in each of the three sets . In every set Ŝ  a finite number of points is thus

obtained. Obviously, the convex hull of these points, S. , is compact and S. C

Sj , i = 1, 2, . , n. The sequence {S*} clearly satisfies all the assumptions of

2.2, so that we can conclude that there exists a straight line intersecting all

S*, and, a fortiori, all the sets S t .

2.4. Finally, we drop the assumption of convexity by the simple remark that,

if two sets are (str ict ly) separated by a straight line, so are their convex

hulls, and if a straight line intersects the convex hull of a connected set, it

intersects the set itself as well. We can, therefore, from a given sequence of

connected sets pass to the sequence of their convex hulls, and after applying

to these the result of 2.3, return to the sets themselves.

This completes the proof of Theorem 1.

3. Proof of Theorem 2. Let (Xuβι G A with 0Lx < βt. There exists a

straight line strictly separating S α ι and Sβ^ Following a method used in [ l ]

we introduce in the plane an orthogonal coordinate system XY in such a way

that the Y axis strictly separates Saι and Sβ^ To every straight line y =

ξx + η in the XY plane corresponds the point (ξ,η) in another, £//, plane.
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For any finite subset {α'i of A9 it follows from Theorem 1 that there exist

straight lines intersecting all Sα/. If {Cίi, βx } C {α'} then the set of points

(ζ9η) corresponding to all such straight lines is a compact set in the Ξ # plane.

Since the intersection of any finite number of such sets is not void, it follows

from a well-known theorem of F. Riesz that the intersection of all of them is

not void. But a straight line corresponding to a point common to all these sets

intersects all the sets S α , Ot E A. Q.e.d.

4. Proof of Theorem 3. Without loss of generality we may assume that the

straight lines separating the sets are vertical.

As in the proof of Theorem 1 we assume the sets S t convex and compact.

It is easy to get rid of these restrictions exactly as in 2.3 and 2.4. Our proof

is again inductive, we assume the theorem for some n >_ 3 and prove it for n + 1.

Every one of the n + 1 sets is contained in a minimal strip, bounded by two

vertical straight lines (the two lines may coincide or one of them may be at

infinity). Strips containing different sets have an intersection which is either

void or consists of a single vertical line belonging to the boundary of the strips.

It is possible, therefore, to enumerate the sets proceeding, say, from left

to right and, in case of indetermination — that is, when a vertical line contains

more than one set, —in an arbitrary fashion. Let Vι be a vertical line separating

the sets Sj and S; + ι , ί - 1, 2, •. ,n. It follows from the method of enumeration

that Vι separates Uy < ι Sj and Uy > ι Sy.

If for some sf 1 £ s £ n — 2, Vs = Vs + 2i
 t n e s e t s $s +1 a n d ^s+2 a r e situated

entirely on the straight line Vs =Vs + ί== Vs+2 Then either

( i ) S s + ι n S s + 2 = φ and Vs is the only straight line intersecting S s + ι and

Ss+2? hence, since every three sets can be intersected by a straight line, all

the sets St have to intersect Vs and the theorem is proved; —or

(i i) S '= Ss + ι n S s + 2 ^ φ and then it is easily seen (either directly or by the

Lemma of 2.1) that the n sets Si9 , SS9 S'9 Ss + 3 , ., Sn + 1 satisfy all the

conditions of the theorem so that, by the induction hypothesis, there exists

a straight line intersecting all of them, hence, a fortiori, intersecting all

Si, i - 1, 2, , n + 1.

Thus we may assume Vi\Φ F ϊ + 2 ϊ = 1, 2, , w - 2, therefore a straight

line intersecting all the sets S(9 i = 1, 2, . . ., n9 cannot be vertical, hence it

must intersect Vn. Let K denote the set of all points through which there pass

straight lines intersecting all Sif i = 1, 2, , n. From the lemma of 2.1 it follows

that I = KnVn is a closed segment (possibly reducing to a point). Using the
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same method as in the proof of Case ( b ) of Theorem 1 we may see that there

exist straight lines T and 7 " and sets Sp9Sp*fSq$Sq*9 having all the properties

of the sets so denoted in 2.2. As in Case ( b ) of Theorem 1 it follows that

Sn + ι must contain points not below T and not above 7 1 ' and hence that S π + 1 r\ K^

φ9 completing the proof of Theorem 3.

5. Proof of Theorem 4. We again assume the separating straight lines

vertical. By Theorem 3 to every finite subfamily of the family {Sa \(a£A ) there

corresponds a straight line intersecting all sets of the subfamily. If to every

finite subfamily there corresponds a vertical intersecting line, it is easily seen

that all the sets Sa9 (except possibly one or two), lie entirely on one vertical

line (which intersects also the possibly remaining one or two) and the theorem

is established in this case.

If there is at least one finite subfamily of {Sa \ for which there is no vertical

straight line intersecting all the sets of the subfamily, then there exist two

sets S α i and Sβ in the subfamily, which can be separated by a vertical straight

line. We then complete the proof exactly in the way in which we proved Theorem

2.

6. Remarks. Simple examples show that some of the assumptions made in

Theorems 1-4 are essential.

6.1. The connectedness of the sets Sj required in the theorems cannot be

dropped entirely. Indeed, denoting by [P Q] the closed segment with endpoints

P and Q, let

Si = [ ( 0 , 0 ) ; (0,3)] , S2 = [ ( 1 , 0 ) ; (1,2)],

S3 =(2,3) u [(2,0); (2,1)] , S4 = [ ( 3 , 2 ) ; ( 3 , 3 ) ] .

Then, except that S3 is not connected, the sequence Sι9S2$S3fS4 satisfies

the assumptions of all four theorems and yet it does not have property A.

It is possible however to substitute for the assumption of connectedness the

somewhat weaker one that if both open half-planes determined by a straight

line L contain points of S then L n S ^ φ. As a matter of fact, in 2.4 and the

corresponding part of the proof of Theorem 3 only the above property of connect-

ed sets was used.

6.2. The strict separation required in Theorems 1 and 2 cannot be dropped.

Indeed, let
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S» = [ ( - 3 , - 1 ) ; (0,-1)], S2 =[(-1,0) ; (-1,1)],

S3 =[(1,0); (1,1)], S 4 = [(0,-1); ( 3 , - 1 ) ] .

Except for the impossibility to separate strictly S1 and S4, the sequence Sί9

52> 53> 4̂ satisfies all the assumptions of Theorems 1 and 2, although it does

not have property <&.

6.3. The compactness assumption in Theorems 2 and 4 cannot be dropped

either. Indeed, if So is the open interval with endpoints (0,0) and (0,1), and

Sj = [ (if 0); (if 1/ί) ], I - 1, 2, 3, , the sequence { St } (i = 0,1, 2, ) satis-

fies all the assumptions of Theorems 2 and 4 except for the noncompactness

of SQ9 and yet it does not have property A.

Added in proof. Since the submission of this paper a slightly weaker version

of Theorems 3 and 4 appeared in a paper by V. L. Klee, Jr., Common secants

for plane convex sets, Proc. Amer. Math. Soc, 5 (1954), 639-641.
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